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PREFACE

The student who has completed some elementary study of symbolic

logic and wishes to pursue the subject further finds himself in a discouraging

situation. He has, perhaps, mastered the contents of Venn's Symbolic

Logic or Couturat's admirable little book, The Algebra of Logic, or the

chapters concerning this subject in Whitehead's Universal Algebra. If he

read German with sufficient ease, he may have made some excursions into

Schroder's Vorlesungen iiber die Algebra der Logik. These all concern the

classic, or Boole-Schroder algebra, and his knowledge of symbolic logic is

probably confined to that system. His further interest leads him almost

inevitably to Peano's Formulaire de Mathematiques, Principia Mathematica

of Whitehead and Russell, and the increasingly numerous shorter studies

of the same sort. And with only elementary knowledge of a single kind of

development of a small branch of the subject, he must attack these most

difficult and technical of treatises, in a new notation, developed by methods

which are entirely novel to him, and bristling with logico-metaphysical

difficulties. If he is bewildered and searches for some means of further

preparation, he finds nothing to bridge the gap. Schroder's work would

be of most assistance here, but this was written some twenty-five years

ago; the most valuable studies are of later date, and radically new methods

have been introduced.

What such a student most needs is a comprehensive survey of the sub-

ject one which will familiarize him with more than the single system

which he knows, and will indicate not only the content of other branches

and the alternative methods of procedure, but also the relation of these to

the Boole-Schroder algebra and to one another. The present book is an

attempt to meet this need, by bringing within the compass of a single

volume, and reducing to a common notation (so far as possible), the most

important developments of symbolic logic. If, in addition to this, some

of the requirements of a "handbook" are here fulfilled, so much the better.

But this survey does not pretend to be encyclopedic. A gossipy recital

of results achieved, or a superficial account of methods, is of no more use

in symbolic logic than in any other mathematical discipline. What is

presented must be treated in sufficient detail to afford the possibility of real

insight and grasp. This aim has required careful selection of material.



vi Preface

The historical summary in Chapter I attempts to follow the main thread

of development, and no reference, or only passing mention, is given to

those studies which seem not to have affected materially the methods of

later researches. In the remainder of the book, the selection has been

governed by the same purpose. Those topics comprehension of which

seems most essential, have been treated at some length, while matters less

fundamental have been set forth in outline only, or omitted altogether.

My own contribution to symbolic logic, presented in Chapter V, has not

earned the right to inclusion here; in this, I plead guilty to partiality.

The discussion of controversial topics has been avoided whenever possible

and, for the rest, limited to the simpler issues involved. Consequently,

the reader must not suppose that any sufficient consideration of these

questions is here given, though such statements as are made will be, I hope,

accurate. Particularly in the last chapter, on "Symbolic Logic, Logistic,

and Mathematical Method ", it is not possible to give anything like an

adequate account of the facts. That would require a volume at least the

size of this one. Rather, I have tried to set forth the most important and

critical considerations somewhat arbitrarily and dogmatically, since there

is not space for argument and to provide such a map of this difficult terri-

tory as will aid the student in his further explorations.

Proofs and solutions in Chapters II, III, and IV have been given very

fully. Proof is of the essence of logistic, and it is my observation that stu-

dents even those with a fair knowledge of mathematics seldom command

the technique of rigorous demonstration. In any case, this explicitness can

do no harm, since no one need read a proof which he already understands.

I am indebted to many friends and colleagues for valuable assistance in

preparing this book for publication : to Professor W. A. Merrill for emenda-

tions of my translation of Leibniz, to Professor J. H. McDonald and

Dr. B. A. Bernstein for important suggestions and the correction of certain

errors in Chapter II, to Mr. J. C. Rowell, University Librarian, for assistance

in securing a number of rare volumes, and to the officers of the University

Press for their patient helpfulness in meeting the technical difficulties of

printing such a book. Mr. Shirley Quimby has read the whole book in

manuscript, eliminated many mistakes, and verified most of the proofs.

But most of all, I am indebted to my friend and teacher, Josiah Royce,

who first aroused my interest in this subject, and who never failed to give

me encouragement and wise counsel. Much that is best in this book is

due to him. C. I. LEWIS.

BERKELEY, July 10, 1917.



CHAPTER I

THE DEVELOPMENT OF SYMBOLIC LOGIC

I. THE SCOPE OF SYMBOLIC LOGIC. SYMBOLIC LOGIC AND LOGISTIC.

SUMMARY ACCOUNT OF THEIR DEVELOPMENT

The subject with which we are concerned has been variously referred

to as "symbolic logic", "logistic", "algebra of logic", "calculus of logic",

"mathematical logic", "algorithmic logic", and probably by other names.

And none of these is satisfactory. We have chosen "symbolic logic"

because it is the most commonly used in England and in this country, and

because its signification is pretty well understood. Its inaccuracy is

obvious: logic of whatever sort uses symbols. We are concerned only

with that logic which uses symbols in certain specific ways those ways

which are exhibited generally in mathematical procedures. In particular,

logic to be called "symbolic" must make use of symbols for the logical

relations, and must so connect various relations that they admit of "trans-

formations" and "operations", according to principles which are capable

of exact statement.

If we must give some definition, we shall hazard the following: Symbolic

Logic is the development of the most general principles of rational pro-

cedure, in ideographic symbols, and in a form which exhibits the connection

of these principles one with another. Principles which belong exclusively

to some one type of rational procedure e. g. to dealing with number and

quantity are hereby excluded, and generality is designated as one of the

marks of symbolic logic.

Such general principles are likewise the subject matter of logic in any

form. To be sure, traditional logic has never taken possession of more

than a small portion of the field which belongs to it. The modes of Aristotle

are unnecessarily restricted. As we shall have occasion to point out, the

reasons for the syllogistic form are psychological, not logical : the syllogism,

made up of the smallest number of propositions (three), each with the small-

est number of terms (two), by which any generality of reasoning can be

attained, represents the limitations of human attention, not logical necessity.

To regard the syllogism as indispensable, or as reasoning par excellence, is

2 1



2 A Survey of Symbolic Logic

the apotheosis of stupidity. And the procedures of symbolic logic, not

being thus arbitrarily restricted, may seem to mark a difference of subject

matter between it and the traditional logic. But any such difference is

accidental, not essential, and the really distinguishing mark of symbolic

logic is the approximation to a certain form, regarded as ideal. There are

all degrees of such approximation ;
hence the difficulty of drawing any hard

and fast line between symbolic and other logic.

But more important than the making of any such sharp distinction is

the comprehension of that ideal of form upon which it is supposed to

depend. The most convenient method which the human mind has so far

devised for exhibiting principles of exact procedure is the one which we

call, in general terms, mathematical. The important characteristics of

this form are: (1) the use of ideograms instead of the phonograms of

ordinary language; (2) the deductive method which may here be taken

to mean simply that the greater portion of the subject matter is derived

from a relatively few principles by operations which are "exact": and

(3) the use of variables having a definite range of significance.

Ideograms have two important advantages over phonograms. In the

first place, they are more compact, + than "plus", 3 than "three", etc.

This is no inconsiderable gain, since it makes possible the presentation of a

formula in small enough compass so that the eye may apprehend it at a

glance and the image of it (in visual or other terms) may be retained for

reference with a minimum of effort. None but a very thoughtless person,

or one without experience of the sciences, can fail to understand the enor-

mous advantage of such brevity. In the second place, an ideographic

notation is superior to any other in precision. Many ideas which are

quite simply expressible in mathematical symbols can only with the greatest

difficulty be rendered in ordinary language. Without ideograms, even

arithmetic would be difficult, and higher branches impossible.

The deductive method, by which a considerable array of facts is sum-

marized in a few principles from which they can be derived, is much more

than the mere application of deductive logic to the subject matter in

question. It both requires and facilitates such an analysis of the whole

body of facts as will most precisely exhibit their relations to one another.

In fact, any other value of the deductive form is largely or wholly fictitious.

The presentation of the subject matter of logic in this mathematical

form constitutes what we mean by symbolic logic. Hence the essential

characteristics of our subject are the following: (1) Its subject matter is
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the subject matter of logic in any form that is, the principles of rational

or reflective procedure in general, as contrasted with principles which

belong exclusively to some particular branch of such procedure. (2) Its

medium is an ideographic symbolism, in which each separate character

represents a relatively simple and entirely explicit concept. And, ideally,

all non-ideographic symbolism or language is excluded. (3) Amongst the

ideograms, some will represent variables (the "terms" of the system)

having a definite range of significance. Although it is non-essential, in

any system so far developed the variables will represent "individuals",

or classes, or relations, or propositions, or
"
propositional functions", or

they will represent ambiguously some two or more of these. (4) Any

system of symbolic logic will be developed deductively that is, the whole

body of its theorems will be derived from a relatively few principles, stated

in symbols, by operations which are, or at least can be, precisely formulated.

We have been at some pains to make as clear as possible the nature of

symbolic logic, because its distinction from "ordinary" logic, on the one

hand, and, on the other, from any mathematical discipline in a sufficiently

abstract form, is none too definite. It will be further valuable to comment

briefly on some of the alternative designations for the subject which have

been mentioned.

"Logistic" would not have served our purpose, because "logistic" is

commonly used to denote symbolic logic together with the application of

its methods to other symbolic procedures. Logistic may be defined as

the science which deals with types of order as such. It is not so much a

subject as a method. Although most logistic is either founded upon or

makes large use of the principles of symbolic logic, still a science of order

in general does not necessarily presuppose, or begin with, symbolic logic.

Since the relations of symbolic logic, logistic, and mathematics are to be

the topic of the last chapter, we may postpone any further discussion of

that matter here. We have mentioned it only to make clear the meaning

which "logistic" is to have in the pages which follow. It comprehends

symbolic logic and the application of such methods as symbolic logic exempli-

fies to other exact procedures. Its subject matter is not confined to logic.

"Algebra of logic" is hardly appropriate as the general name for our

subject, because there are several quite distinct algebras of logic, and

because symbolic logic includes systems which are not true algebras at all.

"The algebra of logic" usually means that system the foundations of

which were laid by Leibniz, and after him independently by Boole, and
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which was completed by Schroder. We shall refer to this system as the

"Boole-Schroder Algebra ".

"Calculus" is a more general term than "algebra". By a "calculus"

will be meant, not the whole subject, but any single system of assumptions

and their consequences.

The program both for symbolic logic and for logistic, in anything like a

clear form, was first sketched by Leibniz, though the ideal of logistic seems

to have been present as far back as Plato's Republic.
1 Leibniz left frag-

mentary developments of symbolic logic, and some attempts at logistic

which are prophetic but otherwise without value. After Leibniz, the two

interests somewhat diverge. Contributions to symbolic logic were made by

Ploucquet, Lambert, Castillon and others on the continent. This type of

research interested Sir William Hamilton and, though his own contribution

was slight and not essentially novel, his papers were, to some extent at

least, responsible for the renewal of investigations in this field which took

place in England about 1845 and produced the work of De Morgan and

Boole. Boole seems to have been ignorant of the work of his continental

predecessors, which is probably fortunate, since his own beginning has

proved so much more fruitful. Boole is, in fact, the second founder of the

subject, and all later work goes back to his. The main line of this develop-

ment runs through Jevons, C. S. Peirce, and MacColl to Schroder whose

Vorlesungen uber die Algebra der Logik (Vol. I, 1890) marks the perfection

of Boole's algebra and the logical completion of that mode of procedure.

In the meantime, interest in logistic persisted on the continent and

was fostered by the growing tendency to abstractness and rigor in mathe-

matics and by the hope for more general methods. Hamilton's quaternions

and the Ausdehnungslehre of Grassmann, which was recognized as a con-

tinuation of the work begun by Leibniz, contributed to this end, as did also

the precise logical analyses of the nature of number by Cantor and Dedekind.

Also, the elimination from "modern geometry" of all methods of proof

dependent upon "intuitions of space" or "construction" brought that

subject within the scope of logistic treatment, and in 1889 Peano provided

such a treatment in I Principii di Geometria. Frege's works, from the

Begri/sschrift of 1879 to the Grundgesetze der Arithmetik (Vol. I, 1893;

Vol. II, 1903) provide a comprehensive development of arithmetic by the

logistic method.

1 See the criticisms of contemporary mathematics and the program for the dialectic

or philosophic development of mathematics in Bk. vi, Step. 510-11 and Philebus, Step. 56-57.
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In 1894, Peano and his collaborators began the publication of the

Formulaire de Mathematiques, in which all branches of mathematics were to

be presented in the universal language of logistic. In this work, symbolic

logic and logistic are once more brought together, since the logic presented

in the early sections provides, in a way, the method by which the other

branches of mathematics are developed. The Formulaire is a monumental

production. But its mathematical interests are as much encyclopedic as

logistic, and not all the possibilities of the method are utilized or made

clear. It remained for Whitehead and Russell, in Principia Mathematica,

to exhibit the perfect union of symbolic logic and the logistic method in

mathematics. The publication of this work undoubtedly marks an epoch

in the history of the subject. The tendencies marked in the development

of the algebra of logic from Boole to Schroder, in the development of the

algebra of relatives from De Morgan to Schroder, and in the foundations

for number theory of Cantor and Dedekind and Frege, are all brought

together here.2 Further researches will most likely be based upon the

formulations of Principia Mathematica.

We must now turn back and trace in more detail the development of

symbolic logic.
3 A history of the subject will not be attempted, if by

history is meant the report of facts for their own sake. Rather, we are

interested in the cumulative process by which those results which most

interest us today have come to be. Many researches of intrinsic value,

but lying outside the main line of that development, will of necessity be

neglected. Reference to these, so far as we are acquainted with them, will

be found in the bibliography.
4

II. LEIBNIZ

The history of symbolic logic and logistic properly begins with Leibniz.5

In the New Essays on the Human Understanding, Philalethes is made to

say :
6 "I begin to form for myself a wholly different idea of logic from

that which I formerly had. I regarded it as a scholar's diversion, but I

now see that, in the way you understand it, it is like a universal mathe-

2
Perhaps we should add "and the modern development of abstract geometry, as by

Hilbert, Fieri, and others", but the volume of Principia which is to treat of geometry has

not yet appeared.
3 The remainder of this chapter is not essential to an understanding of the rest of the

book. But after Chapter i, historical notes and references are generally omitted.
4
Pp. 389-406.

6 Leibniz regards Raymond Lully, Athanasius Kircher, John Wilkins, and George

Dalgarno (see Bibliography) as his predecessors in this field. But their writings contain

little which is directly to the point.
8 Bk. iv, Chap, xvn, 9.
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matics." As this passage suggests, Leibniz correctly foresaw the general

character which logistic was to have and the problems it would set itself

to solve. But though he caught the large outlines of the subject and

actually delimited the field of work, he failed of any clear understanding

of the difficulties to be met, and he contributed comparatively little to

the successful working out of details. Perhaps this is characteristic of the

man. But another explanation, or partial explanation, is possible. Leibniz

expected that the whole of science would shortly be reformed by the appli-

cation of this method. This was a task clearly beyond the powers of any

one man, who could, at most, offer only the initial stimulus and general

plan. And so, throughout his life, he besought the assistance of learned

societies and titled patrons, to the end that this epoch-making reform might

be instituted, and never addressed himself very seriously to the more

limited tasks which he might have accomplished unaided. 7 Hence his

studies in this field are scattered through the manuscripts, many of them

still unedited, and out of five hundred or more pages, the systematic results

attained might be presented in one-tenth the space.
8

Leibniz's conception of the task to be accomplished altered somewhat

during his life, but two features characterize all the projects which he

entertained: (1) a universal medium ("universal language" or "rational

language" or "universal characteristic") for the expression of science;

and (2) a calculus of reasoning (or "universal calculus") designed to display

the most universal relations of scientific concepts and to afford some sys-

tematic abridgment of the labor of rational investigation in all fields, much

as mathematical formulae abridge the labor of dealing with quantity and

number. "The true method should furnish us with an Ariadne's thread,

that is to say, with a certain sensible and palpable medium, which will

guide the mind as do the lines drawn in geometry and the formulae for

operations which are laid down for the learner in arithmetic." 9

This universal medium is to be an ideographic language, each single

character of which will represent a simple concept. It will differ from

existing ideographic languages, such as Chinese, through using a combina-

7 The editor's introduction to "Scientia Generalis. Characteristica" in Gerhardt's

Philosophischen Schriften von Leibniz (Berlin, 1890), vn, gives an excellent account of

Leibniz's correspondence upon this topic, together with other material of historic interest.

(Work hereafter cited as G. Phil.)
8 See Gerhardt, op. dt. especially iv and vn. But Couturat, La logique de Leibniz

(1901), gives a survey which will prove more profitable to the general reader than any
study of the sources.

9 Letter to Galois, 1677, G. Phil, vn, 21.
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tion of symbols, or some similar device, for a compound idea, instead of

having a multiplicity of characters corresponding to the variety of things.

So that while Chinese can hardly be learned in a lifetime, the universal

characteristic may be mastered in a few weeks.10 The fundamental char-

acters of the universal language will be few in number, and will represent

the "alphabet of human thought": "The fruit of many analyses will be the

catalogue of ideas which are simple or not far from simple."
n With this

catalogue of primitive ideas this alphabet of human thought the whole

of science is to be reconstructed in such wise that its real logical organiza-

tion will be reflected in its symbolism.

In spite of fantastic expression and some hyperbole, we recognize here

the program of logistic. If the reconstruction of all science is a project too

ambitious, still we should maintain the ideal possibility and the desirability

of such a reconstruction of exact science in general. And the ideographic

language finds its realization in Peano's Formulaire, in Principia Mathe-

matica, and in all successful applications of the logistic method.

Leibniz stresses the importance of such a language for the more rapid

and orderly progress of science and of human thought in general. The

least effect of it "... will be the universality and communication of

different nations. Its true use will be to paint not the word . . . but the

thought, and to speak to the understanding rather than to the eyes. . . .

Lacking such guides, the mind can make no long journey without losing

its way . . . : with such a medium, we could reason in metaphysics

and in ethics very much as we do in geometry and in analytics, because the

characters would fix our ideas, which are otherwise too vague and fleeting

in such matters in which the imagination cannot help us unless it be by
the aid of characters." 12 The lack of such a universal medium prevents

cooperation. "The human race, considered in its relation to the sciences

which serve our welfare, seems to me comparable to a troop which marches

in confusion in the darkness, without a leader, without order, without any

word or other signs for the regulation of their march and the recognition of

one another. Instead of joining hands to guide ourselves and make sure

of the road, we run hither and yon and interfere with one another." 13

The "alphabet of human thought" is more visionary. The possibility

of constructing the whole of a complex science from a few primitive con-

10 Letter to the Duke of Hanover, 1679 (?), G. Phil, vii, 24-25.
11 G. Phil, vii, 84.
12 G. Phil., vii, 21.
18 G. Phil, vii, 157.
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cepts is, indeed, real vide the few primitives of Principia Mathematica.

But we should today recognize a certain arbitrariness in the selection of

these, though an arbitrariness limited by the nature of the subject. The

secret of Leibniz's faith that these primitive concepts are fixed in the nature

of things will be found in his conception .of knowledge and of proof. He

believes that all predicates are contained in the (intension of the) subject

and may be discovered by analysis. Similarly, all truths which are not

absolutely primitive and self-evident admit of reduction by analysis into

such absolutely first truths. And finally, only one real definition of a

thing "real" as opposed to "nominal" is possible;
14 that is, the result

of the correct analysis of any concept is unambiguously predetermined in

the concept itself.

The construction, from such primitives, of the complex concepts of

the various sciences, Leibniz speaks of as "synthesis" or "invention",

and he is concerned about the "art of invention". But while the result of

analysis is always determined, and only one analysis is finally correct,

synthesis, like inverse processes generally, has no such predetermined

character. In spite of the frequent mention of the subject, the only im-

portant suggestions for this art have to do with the provision of a suitable

medium and of a calculus of reasoning. To be sure there are such obvious

counsels as to proceed from the simple to the complex, and in the early

essay, De Arte Combinatoria, there are studies of the possible permutations

and combinations or "syntheses" of fundamental concepts, but the author

later regarded this study as of little value. And in Initia et Specimina

Scientice nova Generalis, he says that the utmost which we can hope to

accomplish at present, toward the general art of invention, is a perfectly

orderly and finished reconstruction of existing science in terms of the

absolute primitives which analysis reveals. 15 After two hundred years,

we are still without any general method by which logistic may be used in

fields as yet unexplored, and we have no confidence in any absolute primi-

tives for such investigation.

The calculus of reasoning, or universal calculus, is to be the instrument

for the development and manipulation of systems in the universal language,

and it is to get its complete generality from the fact that all science will be

expressed in the ideographic symbols of that universal medium. The

calculus will consist of the general principles of operating with such ideo-

14 See G. Phil, vn, 194, footnote.

15 G. Phil, vn, 84.



The Development of Symbolic Logic 9

graphic symbols: "All our reasoning is nothing but the relating and sub-

stituting of characters, whether these characters be words or marks or

images.
" 16 Thus while the characteristica universalis is the project of the

logistic treatment of science in general, the universal calculus is the pre-

cursor of symbolic logic.

The plan for this universal calculus changed considerably with the

development of Leibniz's thought, but he speaks of it always as a mathe-

matical procedure, and always as more general than existing mathematical

methods. 17 The earliest form suggested for it is one in which the simple

concepts are to be represented by numbers, and the operations are to be

merely those of arithmetical multiplication, division, and factoring. When,

later, he abandons this plan of procedure, he speaks of a general calculus

which will be concerned with what we should nowadays describe as "types

of order" wTith combinations which are absolute or relative, symmetrical

or unsymmetrical, and so on. 1 * His latest studies toward such a calculus

form the earliest presentation of what we now call the "algebra of logic".

But it is doubtful if Leibniz ever thought of the universal calculus as

restricted to our algebra of logic: we can only say that it was intended to

be the science of mathematical and deductive form in general (it is doubtful

whether induction was included), and such as to make possible the appli-

cation of the analytic method of mathematics to all subjects of which

scientific knowledge is possible.

Of the various studies to this end our chief interest will be in the early

essay, De Arte Combinatorial and in the fragments which attempt to

develop an algebra of logic.
20

Leibniz wrote De Arte Combinatoria when he was, in his own words,

mx egressus ex Ephebis, and before he had any considerable knowledge of

mathematics. It was published, he tells us, without his knowledge or

consent. The intention of the work, as indicated by its title, is to serve the

general art of rational invention, as the author conceived it. As has been

mentioned, it seems that this end is to be accomplished by a complete

analysis of concepts of the topic under investigation and a general survey

of the possibilities of their combination. A large portion of the essay is

concerned with the calculation of the possible forms of this and that type

16 G. Phil, vn, 31.
17 See New Essays on the Human Understanding, Bk. iv, Chap, xvn, 9-13.
18 See G. Phil, vn, 31, IQSff., and 204.
19 G. Phil., iv, 35-104. Also Gerhardt, Leibnizens malhematische Schriften (1859), v,

1-79.
20 Sdentia Generalis. Characteristica, xv-xx, G. Phil., vn.
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of logical construct: the various dyadic, triadic, etc., complexes which

can be formed with a given number of elements; of the moods and figures

of the syllogism; of the possible predicates of a given subject (the com-

plexity of the subject as a concept being itself the key to the predicates

which can be analyzed out of it); of the number of propositions from a

given number of subjects, given number of predicate relations, and given

number of quaestiones ;

21 of the variations of order with a given number of

terms, and so on. In fact so much space is occupied with the computation

of permutations and combinations that some of his contemporaries failed

to discover any more important meaning of the essay, and it is most fre-

quently referred to simply as a contribution to combinatorial analysis.
22

Beyond this the significance of the essay lies in the attempt to devise a

symbolism which will preserve the relation of analyzable concepts to their

primitive constituents. The particular device selected for this purpose

representation of concepts by numbers is unfortunate, but the attempt

itself is of interest. Leibniz makes application of this method to geometry

and suggests it for other sciences.23 In the geometrical illustration, the

concepts are divided into classes. Class 1 consists of concepts or terms

regarded as elementary and not further analyzable, each of which is given a

number. Thereafter, the number is the symbol of that concept. Class 2

consists of concepts analyzable into (definable in terms of) those of Class 1.

By the use of a fractional notation, both the class to which a concept

belongs and its place in that class can be indicated at once. The denomi-

nator indicates the number of the class and the numerator is the number of

the concept in that class. Thus the concept numbered 7 in Class 2 is

represented by 7/2. Class 3 consists of concepts definable in terms of

those in Class 1 and Class 2, and so on. By this method, the complete

analysis of any concept is supposed to be indicated by its numerical symbol.
24

21 Leibniz tells us that he takes this problem from the Ars Magna of Raymond Lully.

See G. Phil., v, 62.
22 See letter to Tschirnhaus, 1678, Gerhardt, Math., iv, 451-63. Cf. Cantor, Geschichle

d. Math., in, 39 ff.

23 See the Synopsis, G. Phil., iv, 30-31.
24 See Couturat, op. cit., appended Note vi, p. 554.$'.

The concepts are arranged as follows (G. Phil., iv, 70-72):

"Classis I; 1. Punctum, 2. Spatium, 3. intervallum, 4. adsitum seu contiguum, 5. dis-

situm seu distans, 6. Terminus seu quae distant, 7. Insitum, 8. inclusum (v.g. centrum est

insitum circulo, inclusum peripheriae), 9. Pars, 10. Totum, 11. idem, 12. diversum, 13. unum,
14. Numerus, etc. etc. [There are twenty-seven numbered concepts in this class.]

"Classis II; 1. Quantitas est 14 T&V 9 (15). [Numbers enclosed in parentheses have

their usual arithmetical significance, except that (15) signifies 'an indefinite number'.]
2. Includens est 6.10. III. 1. Intervallum est 2.3.10. 2. Aequale A rf/s 11. J. 3. Continuum

est A ad B, si TOV A r) 9 est 4 et 7 TU B.; etc. etc."
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In point of fact, the analysis (apart from any merely geometrical defects)

falls far short of being complete. Leibniz uses not only the inflected Greek

article to indicate various relations of concepts but also modal inflections

indicated by et, si, quod, quam faciunt, etc.

In later years Leibniz never mentions this work without apologizing for

it, yet he always insists that its main intention is sound. This method

of assuming primitive ideas which are arbitrarily symbolized, of introducing

other concepts by definition in terms of these primitives and, at the same

time, substituting a single symbol for the complex of defining symbols

this is, in fact, the method of logistic in general. Modern logistic differs

from this attempt of Leibniz most notably in two respects: (1) modern

logistic would insist that the relations whereby two or more concepts are

united in a definition should be analyzed precisely as the substantives are

analyzed; (2) while Leibniz regards his set of primitive concepts as the

necessary result of any proper analysis, modern logistic would look upon

them as arbitrarily chosen. Leibniz's later work looks toward the elimina-

tion of this first difference, but the second represents a conviction from

which he never departed.

At a much later date come various studies (not in Gerhardt), which

attempt a more systematic use of number. and of mathematical operations

in logic.
25

Simple and primitive concepts, Leibniz now proposes, should be

symbolized by prime numbers, and the combination of two concepts (the

qualification of one term by another) is to be represented by their product.

Thus if 3 represent "rational" and 7 "animal", "man" will be 21. No

prime number will enter more than once into a given combination a

rational rational animal, or a rational animal animal, is simply a rational

animal. Thus logical synthesis is represented by arithmetical multipli-

cation: logical analysis by resolution into prime factors. The analysis of

"man", 21, would be accomplished by finding its prime factors, "rational",

3, and "animal", 7. In accordance with Leibniz's conviction that all

knowledge is analytic and all valid predicates are contained in the subject,

the proposition "All S is P" will be true if the number which represents

the. concept S is divisible by that which represents P. Accordingly the

25 Dated April, 1679. Couturat (op. tit., p. 326, footnote) gives the titles of these

as follows: "Elemenla Characteristicae Universalis (Collected manuscripts of Leibniz in

the Hanover Library, PHIL., v, 8 b); Calculi universalis Elemenla (PHIL., v, 8 c); Calculi

universalis investigaliones (PHIL., v, 8 d); Modus examinandi consequentias per numeros

(PHIL., v, 8 e); Regulae ex quibus de bonilate consequentiarum formisque et modis syllogis-

morum categoricum judicari potest per numeros (PHIL., v, 8f)." These fragments, with

many others, are contained in Couturat's Opuscules et fragments inedits de Leibniz.



12 A Survey of Symbolic Logic

universal affirmative proposition may be symbolized by S/P = y or S = Py

(where y is a whole number). By the plan of this notation, Py will represent

some species whose "difference", within the genus P, is y. Similarly Sx

will represent a species of S. Hence the particular affirmative, "Some

S is P," may be symbolized by Sx = Py, or S/P =
y/x. Thus the uni-

versal is a special case of the particular, and the particular will always be

true when the universal is true.

There are several objections to this scheme. In the first place, it

presumes that any part of a class is a species within the class as genus.

This is far-fetched, but perhaps theoretically defensible on the ground

that any part which can be specified by the use of language may be treated

as a logical species. A worse defect lies in the fact that Sx = Py will

always be true. For a given S and P, we can always find x and y which

will satisfy the equation Sx = Py. If no other choice avails, let x = P,

or some multiple of P, and y = S, or some multiple of S.
"
Angel-man"

= "man-angel" although no men are angels. "Spineless man" = "ra-

tional invertebrate", but it is false that some men are invertebrates. A
third difficulty arises because of the existential import of the particular

a difficulty which later drew Leibniz's attention. If the particular affirma-

tive is true, then for some x and y-, Sx = Py. The universal negative should,

then, be Sx =f Py. And since the universal affirmative is S = Py, the

particular negative should be S =t= Py- But this symbolism would be

practically unworkable because the inequations would have to be verified

for all values of x and y. Also, as we have noted, the equality Sx = Py
will always hold and Sx ={= Py, where x and y are arbitrary, will never be

true.

Such difficulties led Leibniz to complicate his symbolism still further,

introducing negative numbers and finally using a pair of numbers, one

positive and one negative, for each concept. But this scheme also breaks

down, and the attempt to represent concepts by numbers is thereafter

abandoned.

Of more importance to symbolic logic are the later fragments included

in the plans for an encyclopedia which should collect and arrange all known

science as the proper foundation for future work. 26 Leibniz cherished the

26 G. Phil., vn, xvi-xx. Of these, xvi, without title, states rules for inference in

terms of inclusion and exclusion; Difficultates quaedam logicae treats of subalternation

and conversion and of the symbolic expression for various types of propositions; xvin,

Specimen Calculi universalis with its addenda and marginal notes, gives the general prin-

ciples of procedure for the universal calculus; xix, with the title Non inelegans specimen
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notion that this should be developed in terms of the universal characteristic.

In these fragments, the relations of equivalence, inclusion, and qualification

of one concept by another, or combination, are defined and used. These

relations are always considered in intension when it is a question of apply-

ing the calculus to formal logic. "Equivalence" is the equivalence of

concepts, not simply of two classes which have the same members; "for A
to include B or B to be included in A is to affirm the predicate B universally

of the subject A". 27 However, Leibniz evidently considers the calculus

to have many applications, and he thinks out the relations and illustrates

them frequently in terms of extensional diagrams, in which A, B, etc., are

represented by segments of a right line. Although he preferred to treat

logical relations in intension, he frequently states that relations of intension

are easily transformed into relations of extension. If A is included in B
in intension, B is included in A in extension; and a calculus may be inter-

preted indifferently as representing relations of concepts in intension or

relations of individuals and classes in extension. Also, the inclusion rela-

tion may be interpreted as the relation of an antecedent proposition to a

consequent proposition. The hypothesis A includes its consequence B,

just as the subject A includes the predicate B.28 This accords with his

frequently expressed conviction that all demonstration is analysis. Thus

these studies are by no means to be confined to the logic of intension. As

one title suggests, they are studies demonstrandi in abstractis.

demonstrandi in abstractis struck out, and xx, without title, are deductive developments
of theorems of symbolic logic, entirely comparable with later treatises.

The place of symbolic logic in Leibniz's plans for the Encyclopedia is sufficiently

indicated by the various outlines which he has left. In one of these (G. Phil., vu, 49),

divisions 1-6 are of an introductory nature, after which come:

"7. De scientiarum instauratione, ubi de Systematibus et Repertoriis, et de Encyclo-

paedia demonstrativa codenda.

"8. Elementa veritatis aeternae, et de arte demonstrandi in omnibus disciplinis ut in

Mathesi.

"9. De novo quodam Calculo generali, cujus ope tollantur omnes disputationes inter

eos qui in ipsum consenserit; est Cabala sapientum.
"10. De Arte Inveniendi.

"11. De Synthesi seu Arte combinatoria.

"12. DeAnalysi.
"
13. De Combinatoria speciali, seu scientia formarum, sive qualitatum in genere (de

Characterismis) sive de simili et dissimili.

"14. De Analysi speciali seu scientia quantitatum in genere seu de magno et parvo.
"
15. De Mathesi generali ex duabus praecedentibus composita."

Then various branches of mathematics, astronomy, physics, biological science, medi-

cine, psychology, political science, economics, military science, jurisprudence, and natural

theology, in the order named.
27 G. Phil, vii, 208.
28 "Generales Inquisitiones" (1686): see Couturat, Opuscuks etc., pp. 356-99.
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It is a frequent remark upon Leibniz's contributions to logic that he

failed to accomplish this or that, or erred in some respect, because he

chose the point of view of intension instead of that of extension. The

facts are these: Leibniz too hastily presumed a complete, or very close,

analogy between the various logical relations. It is a part of his sig-

nificance for us that he sought such high generalizations and believed in

their validity. He preferred the point of view of intension, or connotation,

partly from habit and partly from rationalistic inclination. As a conse-

quence, wherever there is a discrepancy between the intensional and ex-

tensional points of view, he is likely to overlook it, and to follow the former.

This led him into some difficulties which he might have avoided by an

opposite inclination and choice of example, but it also led him to make

some distinctions the importance of which has since been overlooked and

to avoid certain difficulties into which his commentators have fallen.29

In Difficulties quaedam logicae, Leibniz shows that at last he recognizes

the difficulty in connecting the universal and the corresponding particular.

He sees also that this difficulty is connected with the disparity between the

intensional point of view and the existential import of particular proposi-

tions. In the course of this essay he formulates the symbolism for the four

propositions in two different ways. The first formulation is:
30

Univ. aff.; All A is B: AB = A, or A non-5 does not exist.

Part, neg.; Some A is not B; AB 4= A, or A non-5 exists.

Univ. neg.; No A is B; AB does not exist.

Part, aff.; Some A is B; AB exists.

AB = A and AB 4= A may be interpreted as relations of intension or of

extension indifferently. If all men are mortal, the intension of "mortal

man" is the same as the intension of "man", and likewise the class of

mortal men is identical in extent with the class of men. The statements

concerning existence are obviously to be understood in extension only.

The interpretation here put upon the propositions is identically that of

contemporary symbolic logic. With these expressions, Leibniz infers the

subaltern and the converse of the subaltern, from a given universal, by
29 For example, it led him to distinguish the merely non-existent from the absurd, or

impossible, and the necessarily true from the contingent. See G. Phil., vn, 231, foot-

note; and "Specimen certitudinis seu de conditionibus," Dutens, Leibnitii Opera, iv,

Part in, pp. 92 ff., also Couturat, La Logique de Leibniz, p. 348, footnote, and p. 353,

footnote.
30 G. Phil., viz, 212.
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means of the hypothesis that the subject, A, exists. Later in the essay, he

gives another set of expressions for the four propositions :
31

All ,4 is B: AB = A.

Some A is not B: AB =(= A.

No A is B: AB does not exist, or AB 4= AB Ens.

Some A is B : AB exists, or AB = AB Ens.

In the last two of these, AB before the sign of equality represents the

possible AB's or the AB "in the region of ideas"; "AB Ens" represents

existing AB's, or actual members of the class AB. (Read AB Ens,
"AB

which exists".) AB = AB Ens thus represents the fact that the class AB
has members; AB 4= AB Ens, that the class AB has no members. A

logical species of the genus A, "some A", may be represented by YA;
YA Ens will represent existing members of that species, or "some exist-

ing A". Leibniz correctly reasons that if AB = A (All A is J5), YAB
= YA (Some A is B); but if AB 4= A, it does not follow that YAB 4= YA,

for if Y = B, YAB = YA. Again, if AB 4= AB Ens (No A is B), YAB
4= YAB Ens (It is false that some A is 5); but if AB = AB Ens (Some

A is B), YAB = YAB Ens does not follow, because Y could assume values

incompatible with A and B. For example, some men are wise, but it does

not follow that foolish men are foolish wise persons, because "foolish" is

incompatible with "wise".32 The distinction here between AB, a logical

division of A or of B, and AB Ens, existing AB's, is ingenious. This is

our author's most successful treatment of the relations of extension and

intension, and of the particular to the universal.

In Specimen calculi universalis, the "principles of the calculus" are

announced as follows :

33

1) "Whatever is concluded in terms of certain variable letters may be

concluded in terms of any other letters which satisfy the same conditions;

for example, since it is true that [all] ab is a, it will also be true that [all]

be is b and that [all] bed is be. . . .

2) "Transposing letters in terms changes nothing; for example ab

coincides with ba, 'animal rational' with 'rational animal'.

3) "Repetition of a letter in the same term is useless. . . .

4) "One proposition can be made from any number by joining all the

subjects in one subject and all the predicates in one predicate : Thus, a is 6

and c is d and e is /, become ace is bdf. . . .

31 G. Phil., vii, 213-14.
32 G. Phil., vn, 215: the illustration is mine.
33 G. Phil, vn, 224-25.
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5) "From any proposition whose predicate is composed of more than

one term, more than one proposition can be made; each derived proposition

having the subject the same as the given proposition but in place of the

given predicate some part of the given predicate. If [all] a is bed, then [all]

a is b and [all] a is c and [all] a is d.
" 24

If we add to the number of these, two principles which are announced

under the head of "self-evident propositions" (1) a is included in a;

and (2) ab is included in a we have here the most important of the funda-

mental principles of symbolic logic. Principle 1 is usually qualified by
some doctrine of the "universe of discourse" or of "range of significance",

but some form of it is indispensable to algorithms in general. The law

numbered 2 above is what we now call the "principle of permutation";

3, the "principle of tautology"; 4, the "principle of composition"; 5, the

"principle of division". And the two "self-evident propositions" are often

included in sets of postulates for the algebra of logic.

There remain for consideration the two fragments which are given in

translation in our Appendix, XIX and XX of Scientia Generalis: Char-

acteristica. The first of these, with the title Non ineleqans specimen demon-

strandi in abstractis, stricken out in the manuscript, is rather the more inter-

esting. Here the relation previously symbolized by AB or ab is represented

by A+B. And A+B = L signifies that A is contained or included in

(est in) B. A scholium attached to the definition of this inclusion relation

distinguishes it from the part-whole relation. Comparison of this and

other passages shows that Leibniz uses the inclusion relation to cover

(1) the relation of a member of the class to the class itself; (2) the relation

of a species, or subclass, to its genus a relation in extension; (3) the rela-

tion of a genus to one of its species a relation of intension. The first of

these is our e-relation; (2) is the inclusion relation of the algebra of logic;

and (3) is the analogous relation of intension. Throughout both these

fragments, it is clear that Leibniz thinks out his theorems in terms of

extensional diagrams, in which classes or concepts are represented by

segments of a line, and only incidently in terms of the intension of concepts.

The different interpretations of the symbols must be carefully dis-

tinguished. If A is "rational" and B is "animal", and A and B are taken

in intension, then A+B will represent "rational animal". But if A and B
are classes taken in extension, then A + B is the class made up of those

things which are either A or B (or both). Thus the inclusion relation,

34 4. and 5. are stated without qualification because this study is confined to the proper-
ties of universal affirmative propositions. 4. is true also for universal negatives.
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A + B = L, may be interpreted either in intension or in extension as "A is

in L ". This is a little confusing to us, because we should nowadays invert

the inclusion relation when we pass from intension to extension; instead

of this, Leibniz changes the meaning of A + B from "both A and B" (in

intension) to "either A or B" (in extension). If A is "rational", B "ani-

mal ", and L "man", then A + B = L is true in intension, "rational animal"

= "man" or "rational" is contained in "man". If A, B, and L are classes

of points, or segments of a line, then A + B = L will mean that L is the

class of points comprising the points in A and the points in B (any points

common to A and B counted only once), or the segment made up of

segments A and B.

The relation A+B does not require that A and B should be mutually

exclusive. If L is a line, A and B may be overlapping segments; and, in

intension, A and B may be overlapping concepts, such as "triangle" and

"equilateral", each of which contains the component "figure".

Leibniz also introduces the relation L A, which he calls detractio.

L A N signifies that L contains A and that if A be taken from L the

remainder is N. The relations [+] and [ ]
are not true inverses: if

A+B = L, it does not follow that L A = B, because A and B may be

overlapping (in Leibniz's terms, communicantia) . If L A = N, A and N
must be mutually exclusive (incommunicantia) . Hence if A+B = L and

A and B have a common part, M, L A = B M. (If the reader will

take a line, L, in which A and B are overlapping segments, this will be

clear.) This makes the relation of detractio somewhat confusing. In

extension, L A may be interpreted
"L which is not A ". In intension,

it is more difficult. Leibniz offers the example: "man" - "rational"

= "brute", and calls our attention to the fact that "man" "rational"

is not "non-rational man" or "man"+ "non-rational".35 In intension, the

relation seems to indicate an abstraction, not a negative qualification.

But there are difficulties, due to the overlapping of concepts. Say that
"man" + "woodworking" = "carpenter" and "man" + "white-skinned"

36 G. Phil., vii, 231, footnote. Couturat in commenting on this (op. tit., pp. 377-78)

says:

"Ailleurs Leibniz essaie de pr6ciser cette opposition en disant:

'A A est Nihilum. Sed A non-A est Absurdum.' "Mais il oublie que le n6ant

(non-Ens) n'est pas autre chose que ce qu'il appelle 1'absurde ou 1'impossible, c'est-a-dire

le contradictoire.
"

It may be that Couturat, not Leibniz, is confused on this point. Non-existence may
be contingent, as opposed to the necessary non-existence of the absurd. And the result of

abstracting A from the concept A seems to leave merely non-Ens, not absurdity.

3
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= "Caucasian". Then "
Caucasian "+" carpenter

" = "man" + "white-

skinned
"
+ "

woodworking ". Hence (" Caucasian
" + "

carpenter ")
"
car-

penter" = "white-skinned", because the common constituent "man" has

been abstracted in abstracting "carpenter". That is, the abstraction of

"carpenter" from "Caucasian carpenter" leaves, not "Caucasian" but

only that part of the concept "Caucasian" which is wholly absent in

"carpenter". We cannot here say "white-skinned man" because "man"

is abstracted, nor "white-skinned animal" because "animal" is contained

in "man": we can only say "white-skinned" as a pure abstraction. Such

abstraction is difficult to carry out and of very little use as an instrument

of logical analysis. Leibniz's illustration is scribbled in the margin of the

manuscript, and it seems clear that at this point he was not thinking out

his theorems in terms of intensions.

Fragment XX differs from XIX in that it lacks the relation symbolized

by [ ]. This is a gain rather than a loss, both because of the difficulty of

interpretation and because [+ ] and [ ] are not true inverses. Also XX
is more carefully developed : more of the simple theorems are proved, and

more illustrations are given. Otherwise the definitions, relations, and

methods of proof are the same. In both fragments the fundamental

operation by which theorems are proved is the substitution of equivalent

expressions.

If the successors of Leibniz had retained the breadth of view which

characterizes his studies and aimed to symbolize relations of a like generality,

these fragments might well have proved sufficient foundation for a satis-

factory calculus of logic.

III. FROM LEIBNIZ TO DE MORGAN AND BOOLE

After Leibniz, various attempts were made to develop a calculus of

logic. Segner, Jacques Bernoulli, Ploucquet, Tonnies, Lambert, Holland,

Castillon, and others, all made studies toward this end. Of these, the

most important are those of Ploucquet, Lambert and Castillon, while one

of Holland's is of particular interest because it intends to be a calculus

in extension. But this attempt was not quite a success, and the net result

of the others is to illustrate the fact that a consistent calculus of logical

relations in intension is either most difficult or quite impossible.

Of Segner's work and Ploucquet's we can give no account, since no

copies of these writings are available.36 Venn makes it clear that Plouc-

36 There seem to be no copies of Ploucquet's books in this country, and attempts to

secure them from the continent have so far failed.
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quet's calculus was a calculus of intension and that it involved the quanti-

fication of the predicate.

Lambert37 wrote voluminously on the subject of logic, but his most

important contribution to symbolic procedure is contained in the Seeks

Versuche einer Zeichenkunst in der Vernunftlehre. These essays are not

separate studies, made from different beginnings; later essays presuppose

those which precede and refer to their theorems; and yet the development

is not entirely continuous. Material given briefly in one will be found

set forth more at length in another. And discussion of more general prob-

lems of the theory of knowledge and of scientific method are sometimes

introduced. But the important results can be presented as a continuous

development which follows in general the order of the essays.

Lambert gives the following list of his symbols:

The symbol of equality (Gleichgiiltigkeit)
=

addition (Zusetzung) +

abstraction (Absonderung)

opposition (des Gegentheils} X
universality >

particularity <

copula

given concepts (Begri/e) a, b, c, d, etc.

undetermined concepts n, m, I, etc.

unknowns x, y, z.

the genus 7

the difference d

The calculus is developed entirely from the point of view of intension:

the letters represent concepts, not classes, [
+

] indicates the union of two

concepts to form a third, [ ] represents the withdrawal or abstraction of

some part of the connotation of a concept, while the product of a and b

represents the common part of the two concepts. 7 and 5 qualify any

term "multiplied" into them. Thus ay represents the genus of a, ad the

difference of a. Much use is made of the well-known law of formal logic

that the concept (of a given species) equals the genus plus the difference.

(1) ay + ad = a(y +5) = a

37 Johann Heinrich Lambert (1728-77), German physicist, mathematician, and astrono-

mer. He is remembered chiefly for his development of the equation xn+px = q in an

infinite series, and his proof, in 1761, of the irrationality of v.

38 In Logische und philosophische Abhandlungen; ed. Joh. Bernoulli (Berlin, 1782),

vol. i.
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ay + ad is the definition or explanation (Erklarung) of a. As immediate

consequences of (1), we have also

(2) ay = a ad (3) a8 = a ay

Lambert takes it for granted that [+ ] and [ ] are strictly inverse opera-

tions. We have already noted the difficulties of Leibniz on this point.

If two concepts, a and b, have any part of their connotation in common,
then (a + &) b will not be a but only that part of a which does not belong

also to b. If "European" and "carpenter" have the common part "man",
then ("European"* "carpenter") minus "carpenter" is not "European"
but "European" minus "man". And [+ ] and [ ]

will not here be true

inverses. But this difficulty may be supposed to disappear where the

terms of the sum are the genus and difference of some concept, since genus

ajiddifference may be supposed to be mutually exclusive. We shall return

to this topic later.

More complex laws of genus and difference may be elicited from the

fact that the genus of any given a is also a concept and can be "explained,"

as can also the difference of a.

(4) a = a(y + 5)
2 = ayz + ayd + ady + ad2

Proof: ay = ayy + ayd and ad = ady + add

But a = ay + ad. Hence Q.E.D.

That is to say: if one wyish to define or explain a, one need not stop at

giving its genus and difference, but may define the genus in terms of its

genus and difference, and define the difference similarly. Thus a is equiva-

lent to the genus of the genus of a plus the difference of the genus of a plus

the genus of the difference of a plus the difference of the difference of a.

This may be called a "higher" definition or "explanation" of a.

Obviously, this process of higher and higher "explanation" may be

carried to any length; the result is what Lambert calls his "Newtonian

formula". We shall best understand this if we take one more preliminary

step. Suppose the explanation carried one degree further and the resulting

terms arranged as follows:

a = a(y
3 + yyd + ydd + 5

3
)

+ ydy + dyd

+ dyy + ddy

The three possible arrangements of two y's and one d might be summarized
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by 37
2
5; the three arrangements of two 6's and one 7 by 375

2
. With this

convention, the formula for an explanation carried to any degree, n, is:

n(n-l) n(n-l}(n-2)
(5) a = a(y

n + ny n~l
b + - - - 7*-

2
5
2 + - - y*~

3
5
3 + . . . etc.

. O 1

This "Newtonian formula" is a rather pleasant mathematical conceit.

Two further interesting laws are given:

(6) a = ad + ay8 + ay
2
8 + ay3

8 + . . . etc.

Proof : a = ay + a8

But ay = ay
2 + ay 8

and a7
2 = ay3 + ay

2
8

ay3 = ay4 + ay3
8, etc. etc.

(7) a = ay + ady + a82
y + a83

y + . . . etc.

Proof: a = ay + a8

But a8 = a8y + a52

and ad 2 = a82
y + ad 3

a8 3 = a83
y + a64

, etc. etc.

Just as the genus of a is represented by ay, the genus of the genus of

a by a7 2
, etc., so a species of which a is genus may be represented by ay~

l
,

and a species of which a is genus of the genus by 7~
2
, etc. In general, as

ay n
represents a genus above a, so a species below a may be represented by

a
ay~ n or

y
n

Similarly ainy concept of which a is difference of the difference of the differ-

ence . . . etc., may be represented by

a
aS-' or -~

Also, just as a = a(y + 8)
n

, where a is a concept and a(y + 8}
n
its "explana-

tion", so- ^
=

a, where ^'ls the concept and a the "explanation"

of it.

Certain cautions in the transformation of expressions, both with respect

to "multiplication" and with respect to "division," need to be observed.40

39 Seeks Versuche, p. 5.

40
Ibid., pp. 9-10.
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The concept ay2 + ady is very different from the concept (ay + ad~)y, because

(8) (ay + a8)y = 0(7+5)7 = ay(y+d) = ay

while O72 + a8y is the genus of the genus of a plus the genus of the difference

of a. Also 7 must be distinguished from .
- 7 is the genus of any

7 77
species x of which a is the genus, i. e.,

(9)
- 7 = a
7

But 07/7 is any species of which the genus of a is the genus, i. e., any

species x such that a and x belong to the same genus.

We turn now to consideration of the relation of concepts which have a

common part.

Similarity is identity of properties. Two concepts are similar if, and

in so far as, they comprehend identical properties. In respect to the

remaining properties, they are different.41

ab represents the common properties of a and b.

a ab represents the peculiar properties of a.

a + b ab ab represents the peculiar properties of a together with

the peculiar properties of b.

It is evident from this last that Lambert does not wish to recognize in

his system the law a + a = a; else he need only have written a + b ab.

If x and a are of the same genus, then

xy = ay and ax = ay = xy

If now we symbolize by a
\

b that part of a which is different from 6,
42 then

(10) a\b + b\a+ ab + ab = a+b

Also x x a = ay, or x = ay + x
\

a

ax = a8

a ax = ad

a = ax + a8

ax a aS = ay = xy

41
Ibid., p. 10.

42 Lambert sometimes uses a
\

b for this, sometimes a : b.
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And since

ay
X "~~

7

ax + a x = a ax + x\a = x

ax = a a x = x x\a

a\x a ax x a = x ax

The fact that y is a property comprehended in x may be expressed by

y = xy or by y + x y = .T. The manner in which Lambert deduces the

second of these expressions from the first is interesting.
43 If y is a property

of x, then y x is null. But by (10),

2xy + x y + y x = x + y

Hence in this case, 2xy + x\y = x + y

And since y =
xy, 2y + x\y = x + y

Hence y + x
\ y = x

He has subtracted y from both sides, in the last step, and we observe that

ty y =
y- This is rather characteristic of his procedure; it follows,

throughout, arithmetical analogies which are quite invalid for logic.

With the complications of this calculus, the reader will probably be

little concerned. There is no general type of procedure for elimination or

solution. Formulae of solution for different types of equation are given.

They are highly ingenious, often complicated, and of dubious application.

It is difficult to judge of possible applications because in the whole course

of the development, so far as outlined, there is not a single illustration of a

solution which represents logical reasoning, and very few illustrations of

any kind.

The shortcomings of this calculus are fairly obvious. There is too

much reliance upon the analogy between the logical relations symbolized

and their arithmetical analogues. Some of the operations are logically

uninterpretable, as for example the use of numerical coefficients other than

and 1. These have a meaning in the
"
Newtonian formula", but 2y either

has no meaning or requires a conventional treatment which is not given.

And in any case, to subtract y from both sides of 2y = x + y and get y = x

represents no valid logical operation. Any adequate study of the properties

of the relations employed is lacking, x = a + b is transformed into a = x

b, regardless of the fact that a and b may have a common part and that

43 Seeks Versuche, p. 12.
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x b represents the abstraction of the whole of b from x. Suppose, for

example, man = rational + animal. Then, by Lambert's procedure, we

should have also rational = man animal. Since Leibniz had pointed

out this difficulty, that addition and subtraction (with exactly these

meanings) are not true inverses, it is the more inexcusable that Lambert

should err in this.

There is a still deeper difficulty here. As Lambert himself remarks,
44

no two concepts are so completely dissimilar that they do not have a common

part. One might say that the concept "thing" (Lambert's word) or "be-

ing" is common to every pair of concepts. This being the case, [
+

] and [ ]

are never really inverse operations. Hence the difficulty will not really

disappear even in the case of ay and a8; and a ay = a8, a ad = ay

will not be strictly valid. In fact this consideration vitiates altogether the

use of "subtraction" in a calculus based on intension. For the meaning

of a b becomes wholly doubtful unless [ ]
be treated as a wholly con-

ventional inverse of f + ], and in that case it becomes wholly useless.

The method by which Lambert treats the traditional syllogism is only

remotely connected with what precedes, and its value does not entirely

depend upon the general validity of his calculus. He reconstructs the

whole of Aristotelian logic by the quantification of the predicate.
45

The proposition "All A is B" has two cases:

(1) A = B, the case in which it has a universal converse, the concept

A is identical with the concept B.

(2) A > B, the case in which the converse is particular, the concept B

comprehended in the concept A .

The particular affirmative similarly has two cases :

(1) A < B, thejcase in which the converse is a universal, the subject A
comprehended within the predicate B.

(2) The case in which the converse is particular. In this case the

subject A is comprehended within a subsumed species of the predicate and

the predicate within a subsumed species of the subject. Lambert says

this may be expressed by the pair:

mA > B and A < nB

Those who are more accustomed to logical relations in extension must

not make the mistake here of supposing that A > mA, and mA < A.

mA is a species of A, and in intension the genus is contained in the species,

Ibid., p. 12.

76td., pp. 93 jf.
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not vice versa. Hence mA > B does not give A > B, as one might expect

at first glance. We see that Lambert here translates "Some A" by mA, a

species comprehended in A, making the same assumption which occurs in

Leibniz, that any subdivision or portion of a class is capable of being treated

as some species comprehended under that class as its genus.

In a universal negative proposition Lambert says the subject and

predicate each have peculiar properties by virtue of whose comprehension

neither is contained in the other. But if the peculiar properties of the

subject be taken away, then what remains is contained in the predicate;

and if the peculiar properties of the predicate be taken away, then what

remains is contained in the subject. Thus the universal negative is repre-

sented by the pair

m
and A> B-

n

The particular negative has two cases :

(1) When it has a universal affirmative converse, i. e., when some A
is not B but all B is A. This is expressed by

A < B

(2) When it has not a universal affirmative converse. In this case a

subsumed species of the subject is contained in the predicate, and a sub-

sumed species of the predicate in the subject.

mA > B and A < nB

Either of the signs, < and >, may be reversed by transposing the

terms. And if P < Q, Q > P, then for some I, P =
IQ. Also, "multi-

plication" and "division" are strict inverses. Hence we can transform

these expressions as follows:

A > B is equivalent to A = mB

A <B
mA> B \
A <nB ]

A
m

A> B-
n

or pA = qB

or =

It is evident from these transformations and from the prepositional equiva-
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lents of the "inequalities" that the following is the full expression of these

equations :

(1) A = mB: All A is B and some B is not A.

(2) nA = B: Some A is not B and all B is A.

(3) mA = nB: Some, but not all, A is B, and some, but not all, B is A.

(4)
- = -

: No A is 5.
TO w

The first noticeable defect here is that A/m = B/n is transformable into

nA = mB and (4) can mean nothing different from (3). Lambert has, in

fact, only four different propositions, if he sticks to the laws of his calculus:

(1) A = B: All A is all B.

(2) A = mB: All A is some B.

(3) nA = B: Some A is all B.

(4) mA = nB: Some A is some B.

These are the four forms which become, in Hamilton's and De Morgan's

treatises, the four forms of the affirmative. A little scrutiny will show that

Lambert's treatment of negatives is a failure. For it to be consistent at

all, it is necessary that
"
fractions" should not be transformed. But

Lambert constantly makes such transformations, though he carefully re-

frains from doing so in the case of expressions like A/m = B/n which are

supposed to represent universal negatives. His method further requires

that TO and n should behave like positive coefficients which are always

greater than and such that m ={= n. This is unfortunate. It makes it

impossible to represent a simple proposition without "entangling alliances".

If he had taken a leaf from Leibniz's book and treated negative propositions

as affirmatives with negative predicates, he might have anticipated the

calculus of De Morgan.

In symbolizing syllogisms, Lambert always uses A for the major term,

B for the middle term, and C for the minor. The perfectly general form of

proposition is :

mA nB

p q

Hence the perfectly general syllogism will be :

46

mA nB
Major

-103.
"

Ibid., p. 107.

p q

Ibid., pp. 102-103.
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nC vB
Minor =

Hn mv
Conclusion C = A

irq pp

The indeterminates in the minor are always represented thus by Greek

letters.

The conclusion is de ved from the premises as follows :

The major premise gives B = A.
np

The minor gives B = C.
TTV

mq up
Hence - A = C.

np irv

and therefore C = A.
n-q pp

The above being the. general form of the syllogism, Lambert's scheme of

moods in the first figure is the following: it coincides with the traditional

classification only so far as indicated by the use of the traditional names:
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a : : h is in fact what Peirce and Schroder later called a "relative product".

Lambert transforms the above equation into :

f a
-- = - Fire is to heat as cause to effect.
h

f Ji

= - Fire is to cause as heat to effect.
a

- = Heat is to fire as effect to cause.
/ a

The dot here represents Wirkuny (it might be, Wirklichkeit, in consonance

with the metaphysical interpretation, suggestive of Aristotle, which he

gives to Ursache). It has the properties of 1, as is illustrated elsewhere50

by the fact that 7 may be replaced by this symbol.

Lambert also uses powers of a relation.

If a =
(p : : b, and b = <p : : c,

a =
<p : : <p : : c =

<p
2

: : c

And if a = <>
2

: : c,

a la

v>
= \-

*c

And more to the same effect.

No use is made of this symbolism; indeed it is difficult to see how

Lambert could have used it. Yet it is interesting that he should have felt

that the powers of a relation ought to be logically important, and that he

here hit upon exactly the concept by which the riddles of "mathematical

induction" were later to be solved.

Holland's attempt at a logical calculus is contained in a letter to Lam-

bert. 51 He himself calls it an "unripe thought", and in a letter some three

years later52 he expresses a doubt if logic is really a purely formal discipline

capable of mathematical treatment. But this study is of particular interest

because it treats the logical classes in extension the only attempt at a

symbolic logic from the point of view of extension from the time of Leibniz

to the treatise of Solly in 1839.

Holland objects to Lambert's method of representing the relation of

concepts by the relation of lines, one under the other, and argues that the

6J
Ibid., p. 21.

51 Johan. Lamberts deutscher Gelehrten Briefwechsel, Brief in, pp. 16 ff,

52 See Ibid., Brief xxvn, pp. 259 ff.

<p
2 = - and

c
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relation of "men" to "mortals" is not sub but inter. He is apparently not

aware that this means exchanging the point of view of intension for that

of extension, yet all his relations are consistently represented in extension,

as we shall see.

(1) If S represent the subject, P the predicate; and p, IT signify unde-

termined variable numbers, S/p = P/TT will come to: A part of <S is a part

of P, or certain of the S's are certain of the P's, or (at least) an S is a P.

This expression is the general formula of all possible judgments, as is

evident by the following:

(2) A member is either positive or negative, and in both cases, is either

finite or infinite. We shall see in what fashion p and IT can be understood.

(3) If p = 1 in S/p, then is S/p as many as all S, and in this way S/p

attains its logical maximum. Since, then, p cannot become less than 1,

it can still less disappear and consequently cannot become negative.

The same is true of TT.

(4) Therefore p and TT cannot but be positive and cannot be less than 1 .

If p or TT becomes infinite, the concept becomes negative.

(5) If/ expresses a finite number > 1, then the possible forms of judg-

ment are as follows:

(1) ^
=

; All S is all P.

(2) |
=
y

All S is some P.

Now expresses negatively what I/* expresses positively. To say that

an infinitely small part of a curved line is straight, means exactly : No part

of a curved line is straight.

(3)
- = All S is not P.
1 oo

(4) ^
=

^
Some S is all P.

J

o p
(5)

- = -T Some S is some P.
j j

S P
(6)

- = Some S is not P.
J

(7)
= ?- All not-S is all P.

oo

See Ibid., Brief iv.
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S P
(8)

=
-j All not-S is some P.

00 /

S P
(9)

= - All not-S is all not-P.
oo oo

(1), (2), and (9) Holland says are universal affirmative propositions;

(3), (7), and (8), universal negatives; (4) and (5), particular affirmatives;

(6), a particular negative.

As Venn has said, this notation anticipates, in a way, the method of

Boole. If instead of the fraction we take the value of the numerator

indicated by it, the three values are

where < v < 1, and S/oo = Q-S. But the differences between this and

Boole's procedure are greater than the resemblances. The fractional form

is a little unfortunate in that it suggests that the equations may be cleared

of fractions, and this would give results which are logically uninterpretable.

But Holland's notation can be made the basis of a completely successful

calculus. That he did not make it such, is apparently due to the fact that

he did not give the matter sufficient attention to elaborate the extensional

point of view.

He gives the following examples :

Example 1 . All men H are mortal M
All Europeans E are men H

7T

M
Ergo, E = [All Europeans are mortal]

pir

Example 2. All plants are organisms P = -

A
All plants are no animals P =

00

A
Ergo, = [Some organisms are not animals]

p oo
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R
Example 3. All men are rational H = -

P

p
All plants are not rational P = -

00

pH
Ergo, All plants are no men P =

oo

In this last example, Holland has evidently transformed H = R/p into

pH = R, which is not legitimate, as we have noted. pH = R would be

"Some men are all the rational beings". And the conclusion P = pHj<x>

is also misinterpreted. It should be, "All plants are not some men". A
correct reading would have revealed the invalid operation.

Lambert replied vigorously to this letter, maintaining the superiority

of the intensional method, pointing out, correctly, that Holland's calculus

would not distinguish the merely non-existent from the impossible or

contradictory (no calculus in extension can), and objecting to the use of

oo in this connection. It is characteristic of their correspondence that each

pointed out the logical defects in the logical procedure of the other, and

neither profited by the criticism.

Castillon's essay toward a calculus of logic is contained in a paper

presented to the Berlin Academy in 1803. 54 The letters S, A, etc., represent

concepts taken in intension, M is an indeterminate, S + M represents the

"synthesis" of S and M, S M, the withdrawal or abstraction of M
from S. S M thus represents a genus concept in w^hich S is subsumed,

M being the logical "difference" of S in S M . Consonantly S + M,

symbolizing the addition of some "further specification" to S, represents a

species concept which contains (in intension) the concept S.

The predicate of a universal affirmative proposition is contained in the

subject (in intension). Thus "All S is A" is represented by

S = A + M
The universal negative "No S is A" is symbolized by

S = - A + M = (- A) + M
The concept S is something, M, from which A is withdrawn is no A.

Particular propositions are divided into two classes, "real" and "il-

lusory". A real particular is the converse of a universal affirmative; the

54 "Memoire sur un nouvel algorithme logique", in Memoires de I'Academie des Sciences

de Berlin, 1803, Classe de philosophic speculative, pp. 1-14. See also his paper, "Reflexions

sur la Logique", loc. cit., 1802.
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illusory particular, one whose converse also is particular. The real particu-

lar affirmative is

A = S - M
since this is the converse of S = A + M . The illusory particular affirmative

is represented by

S = A =F M
Castillon's explanation of this is that the illusory particular judgment gives

us to understand that some S alone is A, or that S is got from A by ab-

straction (S = A M), when in reality it is A which is drawn from S by
abstraction (S = M + A). Thus this judgment puts M where it should

put + M; qne can, then, indicate it by S = A ^ M .

The fact is, of course, that "Some S is A "
indicates nothing about

the relations of the concepts S and A except that they are not incompatible.

This means, in intension, that if one or both be further specified in proper

fashion, the results will coincide. It might wr
ell be symbolized by S + N

= A + M. We suspect that Castillon's choice of S = A ^ M is really

governed by the consideration that S = A + M may be supposed to give

S = A ^ M, the universal to give its subaltern, and that A = S M
will also give S = A ^ M, that is to say, the real particular which is

"All A is S" will also give S = A =F M. Thus "Some S is A" may be

derived both from "All S is A" and from "All A is S", which is a de-

sideratum.

The illusory negative particular is, correspondingly,

S = - A =F M
Immediate inference works out fairly well in this symbolism.

The universal affirmative and the real particular are converses.

S = A + M gives A = S M, and vice versa. The universal negative

is directly convertible.

S = A + M gives A = S + M
, and vice versa. The illusory par-

ticular is also convertible.

S = A =F M gives
- A = S ^ M. Hence A = S ^ M,

which

comes back to S = A ^ M .

A universal gives its subaltern

S = A + M gives S = A =F M, and

S = -A + M gives S = - A =F M.

And a real particular gives also the converse illusory particular, for

A = S M gives S = A + M,
4
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which gives its subaltern, S = A ^ M,
which gives A = S ^ M .

All the traditional moods and figures of the syllogism may be symbolized

in this calculus, those which involve particular propositions being valid

both for the real particular and for the illusory particular. For example:

All M is A M = A + N
AD /Sis M S = M + P
All Sis ,4 :. 8 = A + (N + P)

No M is A M = - A + N
All Sis M S = M + P
No SisA :. S=-A + (N + P)

All Mia A M = A + N
Some S is M S = M =F P or S = M - P

.'. Some S is A .'. S = (A + N) =F P or S = (A + N) - P

This is the most successful attempt at a calculus of logic in intension.

The difficulty about "subtraction" in the XIX Fragment of Leibniz,

and in Lambert's calculus, arises because M P does not mean "M but

not P" or
"M which is not P ". If it mean this, then [

+
]
and

[ ]
are not

true inverses. If, on the other hand, M P indicates the abstraction from

the concept M of all that is involved in the concept P, then M P is

difficult or impossible to interpret, and, in addition, the idea of negation

cannot be represented by [ ]. How does it happen, then, that Castillon's

notation works out so well when he uses [ ]
both for abstraction and as

the sign of negation? It would seem that his calculus ought to involve

him in both kinds of difficulties.

The answer is that Castillon has, apparently by good luck, hit upon a

method in wrhich nothing is ever added to or subtracted from a determined

concept, <S or A, except an indeterminate, M or N or P, and this indeter-

minate, just because it is indeterminate, conceals the fact that [+ ]
and [ ]

are not true inverses. And when the sign [ ] appears before a determinate,

A, it may serve as the sign of negation, because no difficulty arises from

supposing the whole of what is negated to be absent, or abstracted.

Castillon's calculus is theoretically as unsound as Lambert's, or more

so if unsoundness admits of degree. It is quite possible that it was worked

out empirically and procedures which give invalid results avoided.
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Whoever studies Leibniz, Lambert and Castillon cannot fail to be con-

vinced that a consistent calculus of concepts in intension is either immensely

difficult or, as Couturat has said, impossible. Its main difficulty is not

the one which troubled Leibniz and which constitutes the main defect in

Lambert's system the failure of [+ ] and [ ] to behave like true inverses.

This can be avoided by treating negative propositions as affirmatives with

negative predicates, as Leibniz did. The more serious difficulty is that a

calculus of "concepts" is not a calculus of things in actu but only in possibile,

and in a rather loose sense of the latter at that. Holland pointed this out

admirably in a letter to Lambert. 55 He gives the example according to

Lambert's method.

All triangles are figures. T = tF

All quadrangles are figures. Q = qF

T
Whence, F = - = -, or qT = tQ

t q

and he then proceeds:
56

"In general, if from A = mC and B = nC the conclusion nA = mB
be drawn, the calculus cannot determine whether the ideas nA and mB
consist of contradictory partial-ideas, as in the foregoing example, or not.

The thing must be judged according to the matter."

This example also calls attention to the fact that Lambert's calculus,

by operations which he continually uses, leads to the fallacy of the undis-

tributed middle term. If "some A" is simply some further specification

of the concept A, then this mode is not fallacious. And this observation

brings down the whole treatment of logic as a calculus of concepts in in-

tension like a house of cards. The relations of existent things cannot be

determined from the relations of concepts alone.

The calculus of Leibniz is more successful than any invented by his

continental successors unless Ploucquet's is an exception. That the long

period between him and De Morgan and Boole did not produce a successful

system of symbolic logic is probably due to the predilection for this inten-

sional point of view. It is no accident that the English were so quickly

successful after the initial interest was aroused; they habitually think of

logical relations in extension, and when they speak of "intension" it is

usually clear that they do not mean those relations of concepts which the

"intension" of traditional logic signifies.

66 Deutscher Gekhrler Briefwechsel, i, Brief xxvu.
66

Ibid., pp. 262-63.
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The beginning of thought upon this subject in England is marked by the

publication of numerous treatises, all proposing some modification of the

traditional logic by quantifying the predicate. As Sir William Hamilton

notes,
67 the period from Locke to 1833 is singularly barren of any real con-

tributions to logic. About that time, Hamilton himself proposed the

quantification of the predicate. As we now know, this idea was as old at

least as Leibniz. Ploucquet, Lambert, Holland, and Castillon also had

quantified the predicate. Both Hamilton and his student Thomson men-

tion Ploucquet; but this new burst of logical study in England impresses

one as greatly concerned about its own innovations and sublimely indifferent

to its predecessors. Hamilton quarrelled at length with De Morgan to

establish his priority in the matter.58 This is the more surprising, since

George Bentham, in his Outline of a New System of Logic, published in 1827,

had quantified the predicate and given the following table of propositions:

1. X in toto = Y ex parte;

2. X in toto I Y ex parte;

3. X in toto = Y in toto;

4. X in toto Y in toto;

5. X ex parte = Y ex parte;

6. X ex parte Y ex parte;

7. X ex parte = Y in toto;

8. X ex parte Y in toto.

(| is here the sign of "diversity").

But Hamilton was certainly the center and inspirer of a new movement

in logic, the tendency of which was toward more precise analysis of logical

significances. Bayne's Essay on the New Analytic and Thomson's Laws of

Thought are the most considerable permanent record of the results, but

there was a continual fervid discussion of logical topics in various peri-

odicals; logistic was in the air.

This movement produced nothing directly which belongs to the history of

symbolic logic. Hamilton's rather cumbersome notation is not made the

basis of operations, but is essentially only an abbreviation of language.

Solly's scheme of representing syllogisms was superior as a calculus. But

67 See Discussions on Philosophy, pp. 119 jf.
68 This controversy, begun in 1846, was continued for many years (see various articles

in the London Athenaeum, from 1860 to 1867). It was concluded in the pages of the Con-

temporary Review, 1873.
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this movement accomplished two things for symbolic logic: it emphasized

in fact though not always in name the point of view of extension, and

it aroused interest in the problem of a newer and more precise logic. These

may seem small, but whoever studies the history of logic in this period

will easily convince himself that without these things, symbolic logic might
never have been revived. Without Hamilton, we might not have ha'd

Boole. The record of symbolic logic on the continent is a record of failure,

in England, a record of success. The continental students habitually

emphasized intension; the English, extension.

IV. DE MOPGAN

De Morgan59
is known to most students of symbolic logic only through

the theorem which bears his name. But he made other contributions of

permanent value the idea of the "universe of discourse",
60 the discovery

of certain new types of propositions, and a beginning of the logic of rela-

tions. Also, his originality in the invention of new logical forms, his ready

wit, his pat illustrations, and the clarity and liveliness of his writing did

yeoman service in breaking down the prejudice against the introduction

of "mathematical" methods in logic. His important writings on logic

are comprised in the Formal Logic, the Syllabus of a Proposed System of

Logic, and a series of articles in the Transactions of the Cambridge Philo-

sophical Society.
61

69 Augustus De Morgan (1806-78), A.B. (Cambridge, 1827), Professor of Mathematics

in the University of London 1828-31, reappointed 1835; writer of numerous mathematical

treatises which are characterized by exceptional accuracy, originality and clearness. Per-

haps the most valuable of these is "Foundations of Algebra" (Camb. Phil. Trans., vn,

vni) ;
the best known, the Budget of Paradoxes. For a list of his papers, see the Royal

Society Catalogue. For many years an active member of the Cambridge Philosophical

Society and the Royal Astronomical Society. Father of William F. De Morgan, the novelist

and poet. For a brief biography, see Monthly Notices of the Royal Astronomical Society,

xii, 112.

60 The idea is introduced with these words: "Let us take a pair of contrary names,

as man and not-man. It is plain that between them they represent everything, imaginable

or real, in the universe. But the contraries of common language embrace, not the whole

universe, but some one general idea. Thus, of men, Briton and alien are contraries:

every man must be one of the two, no man can be both. . . . The same may be said of

integer and fraction among numbers, peer and commoner among subjects of a realm,

male and female among animals, and so on. In order to express this, let us say that the

whole idea under consideration is the universe (meaning merely the whole of which we are

considering parts) and let names which have nothing in common, but which between them

contain the whole of the idea under consideration, be called contraries in, or with respect to,

that universe." (Formal Logic, p. 37; see also Camb. Phil. Trans., vm, 380.)
61 Formal Logic: or, The Calculus of Inference, Necessary and Probable, 1847. Here-

after to be cited as F. L.
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Although the work of De Morgan is strictly contemporary with that of

Boole, his methods and symbolism ally him rather more with his prede-

cessors than with Boole and those who follow. Like Hamilton, he is bent

upon improving the traditional Aristotelian logic. His first step in this

direction is to enlarge the number of typical propositions by considering

all the combinations and distributions of two terms, X and Y, and their

negatives. It is a feature of De Morgan's notation that the distribution of

each term,
62 and the quality affirmative or negative of the proposition

are indicated, these being sufficient to determine completely the type of

the proposition.

That a term A" is distributed is indicated by writing half a parenthesis

Jbefore or after it, with the horns turned toward the letter, thus: X), or (X.

-An undistributed term is marked by turning the half-parenthesis the other

~vay, thus: X(, or }X. X))Y, for example, indicates the proposition in

which the subject, X, is distributed and the predicate, Y, is undistributed,

that is, "All X is 7". XQY indicates a proposition with both terms un-

distributed, that is, "Some X is Y".63 The negative of a term, X, is indi-

cated by .T; of Y by y, etc. A negative proposition is indicated by a dot

placed between the parenthetical curves; thus "Some JT is not Y" will

be X(-(Y.
6* Two dots, or none, indicates an affirmative proposition.

All the different forms of proposition which De Morgan uses can be

generated from two types, the universal, "All . . . is . . .," and the

particular, "Some . . .is . . .," by using the four terms, X and its nega-

tive, x, Y and y. For the universals we have:

Syllabus of a Proposed System of Logic, 1860. Hereafter to be cited as Syll.

Five papers (the first not numbered; various titles) in Camb. Phil. Trans., vm, ix, x.

The articles contain the most valuable material, but they are ill-arranged and inter-

spersed with inapposite discussion. Accordingly, the best way to study De Morgan is to

get these articles and the Formal Logic, note in a general way the contents of each, and

then use the Syllabus as a point of departure for each item in which one is interested.

62 He does not speak of "distribution" but of terms which are "universally spoken of"

or "particularly spoken of ", or of the "quantity" of a term.
63 This is the notation of Syll. and of the articles, after the first, in Camb. Phil. Trans.

For a table comparing the different symbolisms which he used, see Camb. Phil. Trans.,

ix, 91.
64 It is sometimes hard to determine by the conventional criteria whether De Morgan's

propositions should be classed as affirmative or negative. He gives the following ingenious

rule for distinguishing them (Syll., p. 13): "Let a proposition be affirmative which is true

of X and X, false of X and not-.X" or x; negative, which is true of X and x, false of X and X.

Thus 'Every X is Y' is affirmative: 'Every X is X' is true; 'Every X is x' is false. But

'Some things are neither X's nor Y's' is also affirmative, though in the form of a denial:

'Some things are neither X's nor X's' is true, though superfluous in expression; 'Some

things are neither X's nor x's' is false."
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(1) Z))F All X is F.

(2) x)}y All not-Z is not- Y.

(3) X}}y All Z is not-F.

(4) z))F All not-Z is F.

and for particulars we have :

(5) Z()F Some X is F.

(6) x()y Some not-Z is not-F.

(7) XQy Some Z is not-F.

(8) z()F Somenot-Zis F.

The rule for transforming a proposition into other equivalent forms may
be stated as follows: Change the distribution of either term that is, turn

its parenthetic curve the other way, change that term into its negative,

and change the quality of the proposition. That this rule is valid will

appear if we remember that "two negatives make an affirmative", and note

that we introduce one negative by changing the term, another by changing

the quality of the proposition. That the distribution of the altered term

should be changed follows from the fact that whatever proposition distrib-

utes a term leaves the negative of that term undistributed, and whatever

proposition leaves a term undistributed distributes the negative of that

term. Using this rule of transformation, we get the following table of

equivalents for our eight propositions:

(a) (b) (c) (d)

(1) Z))F = Z).(</ =x((y =z(-)F

(2) x}}y = x}.(Y =Z((F = Z(-)2/

(3) X}}y = X}-(Y = x((Y = x(-}y

(4) .r))F = xY(y =X((y = Z(-)F

(5) XQY = X(.(y =x}(y = z)-)F

(6) x()y =x(.(Y =Z)(F = Z)-)2/

(7) X(}y =X(-(Y = x)(Y = x}-}y

(8) xQY =x(-(y =X}(y =Z)-)F

It will be observed that in each line there is one proposition with both

terms positive, Z and F. Selecting these, we have the eight different types

of propositions:
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(la) AT))y All X is 7.

(2c) X((Y Some X is all 7; or, All Y is AT.

(36) X)-(Y No AT is 7.

(4d) A'(-)y Everything is either X or y. (See below.)

(5a) XQY Some X is y.

(6c) X)(Y Some things are neither X nor y. (See below.)

(76) X(-(Y Some X is not y.

(8d) X) ) y All AT is not some y; or, Some Y is not X.

Since the quantity of each term is indicated, any one of these propositions

may be read or written backwards that is, with y subject and X predicate

provided the distribution of terms is preserved. (4d) and (6c) are diffi-

cult to understand. We might attempt to read X(-}Y "Some A' is not

some y", but we hardly get from that the difference between X(-}Y and

X(-(Y, "Some X is not (any) Y". Also, A"(-)y is equivalent to uni-

versals, and the reading, "Some X is not some Y", would make it par-

ticular. X(-)Y is equivalent to a:)) y, "All not-Z is y", and to x)-(y,

"No not-A" is not-y". The only equivalent of these with the terms

X and y is, "Everything (in the universe of discourse) is either A' or y

(or both)". (6c), X)(Y, we should be likely to read "All X is all Y", or

"A" and y are equivalent";, but this would be an error,
65 since its equivalents

are particular propositions. (6a), x()y, is "Some not-A" is not-y".

The equivalent of this in terms of X and y is plainly, "Some things are

neither X nor y".

Contradictories66 of propositions in line (1) will be found in line (7);

of those in line (2), in line (8); of line (3), in line (5); of line (4), in line (6).

We give those with both terms positive :

(la) Z))y contradicts (76) X(-(Y

(2c) X((Y
"

(So
7

) A}7

(36) X)-(Y
"

(5a) XQY
(.)Y

"
(6c) X)(Y

65 An error into which it might seem that De Morgan himself has fallen. See e. g.,

Syll, p. 25, and Camb. Phil. Trans., ix, 98, where he translates X)(Y by "All X is all Y",
or "Any one X is any one Y ". But this belongs to another interpretation, the "cumular",
which requires X and Y to be singular, and not-X and not-F will then have common
members. However, as we shall note later, there is a real difficulty.

66 De Morgan calls contradictory propositions "contraries" (See F. L., p. 60; Syll.,

p. 11), just as he calls terms which are negatives of one another "contraries".
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Thus the rule is that two propositions having the same terms contradict

one another when one is affirmative, the other negative, and the distribution

of terms is exactly opposite in the two cases.

The rule for transforming propositions which has been stated and

exemplified, together with the observation that any symbolized proposition

may be read or written backwards, provided the distribution of the terms

be preserved, gives us the principles for the immediate inference of uni-

versals from universals, particulars from particulars. For the rest, we have

the rule, "Each universal affirms the particulars of the same quality".
67

For syllogistic reasoning, the test of validity and rule of inference are

as follows: 6&

"There is inference: 1. When both the premises are universal; 2. When,

one premise only being particular, the middle term has different quantities

in the two premises.
" The conclusion is found by erasing the middle term and its quantities

[parenthetic curves]." This rule of inference is stated for the special

arrangement of the syllogism in wrhich the minor premise is put first, and

the minor term first in the premise, the major term being the last in the

second premise. Since any proposition may be written backward, this

arrangement can always be made. According to the rule, X)}Y, "All X
is F", and F)-(Z, "No Y is Z", give X)-(Z, "No X is Z". X)-(F, "No
X is F", and Y(- (Z, "Some Y is not Z", give X) (Z, or X) (Z, which is

"Some things are neither X nor Z.
" The reader may, by inventing other

examples, satisfy himself that the rule given is sufficient for all syllogistic

reasoning, with any of De Morgan's eight forms of propositions.

De Morgan also invents certain compound propositions which give com-

pound syllogisms in a fashion somewhat analogous to the preceding:
69

"1. Z)0)Forboth.Y))FandZ)-)F All X's and some things be-

sides are F's.

2. X\ For both Z))F and Z((F All X's are F's, and all F's

are X's.

3. X(O(Y or both X((Y and X(-(Y Among X's are all the F's and

some things besides.

4. X}O (For both X}-(Y and X)(Y Nothing both X and F and

some things neither.

67
Syll, p. 16.

*Syll., p. 19.

69
Sytt., p. 22.
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5.-X\- For both A>(Fand X(>)Y Nothing both X and Y and

everything one or the other.

6. X(O)Y or both X(-)Y and XQY Everything either X or Y and

some things both."

Each of these propositions may, with due regard for the meaning of the

sign O, be read or written backward, just as the simple propositions. The

rule of transformation into other equivalent forms is slightly different:

Change the quantity, or distribution, of any term and replace that term

by its negative. We are not required, as with the simple propositions, to

change at the same time the quality of the proposition. This difference

is due to the manner in which the propositions are compounded.

The rules for mediate, or "syllogistic", inference for these compound

propositions are as follows :
70

"If any two be joined, each of which is [of the form of] 1, 3, 4, or 6,

with the middle term of different quantities, these premises yield a con-

clusion of the same kind, obtained 'by erasing the symbols of the middle

term and one of the symbols [Q]- Thus X}O(Y(O}Z gives X)O)Z: or

if nothing be both X and Y and some things neither, and if everything be

either Y or Z and some things both, it follows that all X and two lots of

other things are Z's.

"In any one of these syllogisms, it follows that may be written for

)O) or )O( in one place, without any alteration of the conclusion, except

reducing the two lots to one. But if this be done in both places, the con-

clusion is reduced to
j

or , and both lots disappear. Let the reader

examine for himself the cases in which one of the premises is cut down to a

simple universal.

"The following exercises will exemplify what precedes. Letters written

under one another are names of the same object. Here is a universe of 12

instances of which 3 are X's and the remainder P's; 5 are F's and the

remainder Q's; 7 are Z's and the remainder R's.

XXX PP PP PPPPP
YYY YY qq qqqqq
Z Z Z Z Z Z Z RRRRR

We can thus verify the eight complex syllogisms

X)omo)Z P(0)Y)0)Z P(Q(Q(o)Z P(O(Q(O(R

P(0)Y)0(R X)0)Y)0(R X)0(Q(0(R
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In every case it will be seen that the two lots in the middle form the quantity

of the particular proposition of the conclusion."

In so much of his work as we have thus far reviewed, De Morgan is still

too much tied to his starting point in Aristotelian logic. He somewhat

simplifies traditional methods and makes new generalizations which include

old rules, but it is still distinctly the old logic. He does not question the

inference from universals to particulars nor observe the problems there

involved. 71 He does not seek a method by which any number of terms

may be dealt with but accepts the limitation to the traditional two. And

his symbolism has several defects. The dot introduced between the

parenthetic curves is not the sign of negation, so as to make it possible to

read () as, "It is false that ()". The negative of () is )(, so that this

simplest of all relations of propositions is represented by a complex trans-

formation applicable only when no more than two terms are involved in the

prepositional relation. Also, there are two distinct senses in which a

term in a proposition may be distributed or "mentioned universally", and

De Morgan, following the scholastic tradition, fails to distinguish them and

symbolizes both the same way. This is the secret of the difficulty in reading

X)(Y, which looks like "All X is all Y", and really is "Some things are

neither X nor Y ". 72 Mathematical symbols are introduced but without any

corresponding mathematical operations. The sign of equality is used both

for the symmetrical relation of equivalent propositions and for the un-

symmetrical relation of premises to their conclusion. 73

His investigation of the logic of relations, however, is more successful,

and he laid the foundation for later researches in that field. This topic

is suggested to him by consideration of the formal and material elements

in logic. He says:
74

71 But he does make the assumption upon which all inference (in extension) of a

particular from a universal is necessarily based : the assumption that a class denoted by a

simple term has members. He says (F. L., pp. 110), "Existence as objects, or existence as

ideas, is tacitly claimed for the terms of every syllogism".
72 A universal affirmative distributes its subject in the sense that it indicates the class

to which every member of the subject belongs, i. e., the class denoted by the predicate.

Similarly, the universal negative, No X is Y, indicates that every X is not-Y", every F is

not-X. No particular proposition distributes a term in that sense. The particular nega-

tive tells us only that the predicate is excluded from some unspecified portion of the class

denoted by the subject. X)(Y distributes X and Y in this sense only. Comparison with

its equivalents shows us that it can tell us, of X, only that it is excluded from some un-

specified portion of not-F; and of Y, only that it is excluded from some unspecified portion
of not-X. We cannot infer that X is wholly included in Y, or Y in X, or get any other

relation of inclusion out of it.

73 In one passage (Carafe. Phil. Trans., x, 183) he suggests that the relation of two

premises to their conclusion should be symbolized by A B < C.
74 Camb. Phil. Trans., x, 177, footnote.
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"Is there any consequence without /orm? Is not consequence an action

of the machinery? Is not logic the science of the action of the machinery?

Consequence is always an act of the mind : on every consequence logic ought

to ask, What kind of act? What is the act, as distinguished from the acted

on, and from any inessential concomitants of the action ? For these are of

the form, as distinguished from the matter.

"... The copula performs certain functions; it is competent to those

functions . . . because it has certain properties, which are sufficient to

validate its use. . . . The word 'is,' which identifies, does not do its work

because it identifies, except insofar as identification is a transitive and

convertible motion: 'A is that which is B' means 'A is B'; and 'A is B'

means 'B is A'. Hence every transitive and convertible relation is as fit

to validate the syllogism as the copula 'is', and by the same proof in each

case. Some forms are valid when the relation is only transitive and not

convertible; as in 'give'. Thus if X Y represent X and Y connected

by a transitive copula, Camestres in the second figure is valid, as in

Every ZY, No X Y, therefore No X Z.

... In the following chain of propositions, there is exclusion of matter,

form being preserved at every step :

Hypothesis

(Positively true) Every man is animal

Every man is Y Y has existence.

Every X is Y X has existence.

Every X Y -
is a transitive relation.

a of A" Y a is a fraction < or = 1.

(Probability j8) a of X 7 )8 is a fraction < or = 1.

The last is nearly the purely formal judgment, with not a single material

point about it, except the transitiveness of the copula.
75

"... I hold the supreme form of the syllogism of one middle term to

be as follows: There is the probability a that X is in the relation L to 7;

there is the probability /3 that Y is in the relation M to Z; whence there is

the probability a/3 that X is in the relation L of M to Z. 76

"... The copula of cause and effect, of motive and action, of all which

post hoc is of the form and propter hoc (perhaps) of the matter, will one day

be carefully considered in a more complete system of logic."
77

75
Ibid., pp. 177-78.

76
Ibid., p. 339.

77
Ibid., pp. 179-80.
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De Morgan is thus led to a study of the categories of exact thinking in

general, and to consideration of the types and properties of relations.

His division of categories into logico-mathematical, logico-physical, logico-

metaphysical, and logico-contraphysical,
78

is inauspicious, and nothing

much comes of it. But in connection with this, and an attempt to rebuild

logic in the light of it, he propounds the well-known theorem: "The con-

trary [negative] of an aggregate [logical sum] is the compound [logical

product] of the contraries of the aggregants: the contrary of a compound
is the aggregate of the contraries of the components."

79

For the logic of relations, X, Y, and Z will represent the class names;

L, M, N, relations. X . . LY will signify that X is some one of the objects

of thought which stand to Y in the relation L, or is one of the L's of F. 80

X . LY will signify that X is not any one of the L's of Y. X . . (LM) Y or

X . . LM Y will express the fact that X is one of the L's of one of the M's

of Y, or that X has the relation L to some Z which has the relation M to Y.

X . LM Y will mean that X is not an L of any M of Y.

It should be noted that the union of the two relations L and M is what

we should call today their "relative product" ;
that is, X . .LY and Y . . MZ

together give X . . LM Z, butX . . LY and X . . MY do not give X . . LM Y.

If L is the relation "brother of" and M is the relation "aunt of", X . . LM Y
will mean "X is a brother of an aunt of F". (Do not say hastily,

"X is

uncle of F". "Brother of an aunt" is not equivalent to "uncle" since

some uncles have no sisters.) L, or M, written by itself, will represent

that which has the relation L, or M, that is, a brother, or an aunt, and LY
stands for any X which has the relation L to Y, that is, a brother of I

7
.
81

In order to reduce ordinary syllogisms to the form in which the copula

has that abstractness which he seeks, that is, to the form in which the

copula may be any relation, or any relation of a certain type, it is necessary

to introduce symbols of quantity. Accordingly LM*
is to signify an L of

every M, that is, something which has the relation L to every member of

the class M (say, a lover of every man). L*M is to indicate an L of none

but M's (a lover of none but men). The mark of quantity,
* or *, always

78 See ibid., p. 190.
79

Ibid., p. 208. See also Syll., p. 41. Pp. 39-60 of Syll. present in summary the ideas

of the paper, "On the Syllogism, No. 3, and on Logic in General.''

80 Camb. Phil. Trans., x, 341. We follow the order of the paper from this point on.

81 1 tried at first to make De Morgan's symbolism more readily intelligible by intro-

ducing the current equivalents of his characters. But his systematic ambiguities, such

as the use of the same letter for the relation and for that which has the relation, made
this impossible. For typographical reasons, I use the asterisk where he has a small accent.
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goes with the letter which precedes it, but L*M is read as if {*] modified

the letter which follows. To obviate this difficulty, De Morgan suggests

that L*M be read, "An every-!/ of M; an L of M in every way in which

it is an L," but we shall stick to the simpler reading, "An L of none but

M's".

LM*X means an L of every M of X: L*MX, an L of none but M's of X:

L*M*, an L of every M and of none but M's: LMX*, an L of an M of

every X, and so on.

Two more symbols are needed. The converse of L is symbolized by L~l
.

If L is "lover of", L~l
is "beloved of"; if L is "aunt", L~l

is "niece or

nephew ". The contrary (or as we should say, the negative) of L is symbol-

ized by 1; the contrary of M by m.

In terms of these relations, the following theorems can be stated :

(1) Contraries of converses are themselves contraries.

(2) Converses of contraries are contraries.

(3) The contrary of the converse is the converse of the contrary.

(4) If the relation L be contained in, or imply, the relation M , then (a) the

converse of L, L~l

,
is contained in the converse of M, M~l

\
and (6) the

contrary of M, m, is contained in the contrary of L, I.

For example, if "parent of
"

is contained in "ancestor of", (a) "child of"

is contained in "descendent of", and (6) "not ancestor of" is contained in

"not parent of".

(5) The conversion of a compound relation is accomplished by converting

both components and inverting their order; thus, (LM)~l = M~1L~*.

If X be teacher of the child of Y, Y is parent of the pupil of X.

When a sign of quantity is involved in the conversion of a compound

relation, the sign of quantity changes its place on the letter; thus, (LM*)~
l

= M*-1!.-1
.

If X be teacher of every child of Y, Y is parent of none but pupils of X.

(6) When, in a compound relation, there is a sign of quantity, if each

component be changed into its contrary, and the sign of quantity be shifted

from one component to the other and its position on the letter changed,

the resulting relation is equivalent to the original; thus LM * = l*m and

L*M = 1m*.

A lover of every man is a non-lover of none but non-men; and a lover

of none but men is a non-lover of every non-man.
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(7) When a compound relation involves no sign of quantity, its contrary

is found by taking the contrary of either component and giving quantity

to the other. The contrary of LM is IM* or L*m.

"Not (lover of a man)" is "non-lover of every man" or "lover of none

but non-men"; and there are two equivalents, by (6).

But if there be a sign of quantity in one component, the contrary is

taken by dropping that sign and taking the contrary of the other component.

The contrary of LM *
is IM

;
of L*M is Lm.

"Not (lover of every man)" is "non-lover of a man"; and "not (lover

of none but men)" is "lover of a non-man".

So far as they do not involve quantifications, these theorems are familiar

to us today, though it seems not generally known that they are due to

De Morgan. The following table contains all of them:

Converse of Contrary
Combination Converse Contrary Contrary of Converse

LM M~lL~l IM* or L*M M*^l~l or m'lL~l *

LM*orl*m M*~lL~l or m^l'1 * IM M^H
L*M or Im* M~lL~l * or m*~ ll~l Lm m^L'1

The sense in which one relation is said to be "contained in" or to

"imply" another should be noted: L is contained in M in case every X
which has the relation L to any Y has also the relation M to that F. This

must not be confused with the relation of class inclusion between two rela-

tive terms. Every grandfather is also a father, the class of grandfathers is

contained in the class of fathers, but "grandfather of" is not contained in

"father of", because the grandfather of Y is not also the father of Y. The

relation "grandfather of" is contained in "ancestor of", since the grand-

father of F is also the ancestor of F. But De Morgan appropriately uses

the same symbol for the relation
" L contained in M "

that he uses for "All

L is M ", where L and M are class terms, that is, L))M.
In terms of this relation of relations, the following theorems can be

stated :

(8) If L))M, then the contrary of M is contained in the contrary of L,

that is, L))M gives ra))/.

Applying this theorem to compound relations, we have:

(8') LM))N gives n))lM* and n))L*m.

(8"} If LM))N, then L~l

n)}m and nlf-1

))/.

Proof: If LM))N, then n)}lM*. Whence nM-l))lM*M~
1

. But an / of
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every M of an M~l of Z must be an / of Z. Hence nM~l

))l. Again; if

LM))N, then n))Z,*m. Whence L-l

n~))L-
lL*m. But whatever has the

relation converse-of-Z to an L of none but m's must be itself an m. Hence

I-l
n))m.

De Morgan calls this "theorem K "
from its use in Baroko and Bokardo.

(9) If LM = N, then L))NM~l and M))L~
1N.

Proof: If LM = N, then LMM~l = tfJf-1 and L~1LM = L~1N. Now
for any X, MM~1X and L~1LX are classes which contain X', hence the

theorem.

We do not have L = NM~l and M = L~1

N, because it is not generally

true that MM~1X = X and L~1LX = X. For example, the child of the

parent of X may not be X but A"'s brother : but the class
"
children of the

parent of X" will contain X. The relation MM~l or M~1M will not always

cancel out. MM'1 and M~1M are always symmetrical relations
;
ifXMM~lY

then YMM~1X. If X is child of a parent of Y, then Y is child of a parent

of A'. But MM-1 and M^M are not exclusively reflexive. XMM~ 1X does

not always hold. If we know that a child of the parent of X is a celebrated

linguist we may not hastily assume that X is the linguist in question.

With reference to transitive relations, we may quote :
82

"A relation is transitive when a relative of a relative is a relative of

the same kind; as symbolized in LL)}L, whence ZZZ))ZZ))Z; and so on.

"A transitive relation has a transitive converse, but not necessarily a

transitive contrary: for L~lL~l
is the converse of LL, so that ZZ))Z gives

Z^Zr^Zr1
. From these, by contraposition, and also by theorem K and

its contrapositions, we obtain the following results :

L is contained in LL-1

*, Ul~l
,
l~l

l*, L*~ 1L
L-1 .......... L*L~l

,
II-1

*, l*~l

l, L~ 1L*

I ............. IL*,L*1

I-1 ........... Z*-1/-1

,
HI-1 *

LL ........... L

L^l, IL-1 ...... I

LI-1
,
l^L ...... H

"I omit demonstration, but to prevent any doubt about correctness of

printing, I subjoin instances in words: L signifies ancestor and L-1 descendent.

82 Camb. Phil. Trans., x, 346. For this discussion of transitive relations, De Morgan
treats all reciprocal relations, such as XLL~1

Y, as also reflexive, though not necessarily

exclusively reflexive.
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"An- ancestor is always an ancestor of all descendents, a non-ancestor

of none but non-descendents, a nbn-descendent of all non-ancestors, and a

descendent of none but ancestors. A descendent is always an ancestor of

none but descendents, a non-ancestor of all non-descendents, a non-descend-

ent of none but non-ancestors, and a descendent of all ancestors. A non-

ancestor is always a non-ancestor of all ancestors, and an ancestor of none

but non-ancestors. A non-descendent is a descendent of none but non-

descendents, and a non-descendent of all descendents. Among non-

ancestors are contained all descendents of non-ancestors, and all non-

ancestors of descendents. Among non-descendents are contained all

ancestors of non-descendents, and all non-descendents of ancestors."

In terms of the general relation, L, or M, representing any relation, the

syllogisms of traditional logic may be tabulated as follows: K
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When the copula of all three propositions is limited to the same transitive

relation, L, or its converse, the table of syllogisms will be :
84

X..LY X.LY X..LY
I Y..LZ Y..L~1Z Y.L~1Z

X . . LZ X.LZ X. L-^Z

X ..LY

Z .LY

X . L~1Z
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"And here the general idea of relation emerges, and for the first time

in the history of knowledge, the notions of relation and relation of relation

are symbolized. And here again is seen the scale of graduation of forms,

the manner in which what is difference of form at one step of the ascent is

difference of matter at the next. But the relation of algebra to the higher

developments of logic is a subject of far too great extent to be treated here.

It will hereafter be acknowledged that, though the geometer did not think

it necessary to throw his ever-recurring principiwn et exemplum into imita-

tion of Omnis homo est animal, Sortes est homo, etc., yet the algebraist was

living in the higher atmosphere of syllogism, the unceasing composition of

relation, before it was admitted that such an atmosphere existed." 86

V. BOOLE

The beginning from which symbolic logic has had a continuous develop-

ment is that made by George Boole. 87 His significant and vital contribution

was the introduction, in a fashion more general and systematic than before,

of mathematical operations. Indeed Boole allows operations which have

no direct logical interpretation, and is obviously more at home in mathe-

matics than in logic. It is probably the great advantage of Boole's wrork

that he either neglected or was ignorant of those refinements of logical

theory which hampered his predecessors. The precise mathematical

development of logic needed to make its own conventions and interpreta-

tions; and this could not be done without sweeping aside the accumulated

traditions of the non-symbolic Aristotelian logic. As we shall see, all the

nice problems of intension and extension, of the existential import of uni-

versals and particulars, of empty classes, and so on, return later and demand

consideration. It is well that, with Boole, they are given a vacation long

enough to get the subject started in terms of a simple and general procedure.

Boole's first book, The Mathematical Analysis of Logic, being an Essay

toward a Calculus of Deductive Reasoning, was published in 1847, on the

88 1 omit, with some misgivings, any account of De Morgan's contributions to prob-

ability theory as applied to questions of authority and judgment. (See Syll, pp. 67-72;
F. L., Chap, ix, x; and Camb. Phil. Trans., vm, 384-87, and 393-405.) His work on this

topic is less closely connected with symbolic logic than was Boole's. The allied subject of

the "numerically definite syllogism" (see Syll., pp. 27-30; F. L., Chap, vm; and Camb.
Phil. Trans., x, *355-*358) is also omitted.

87
George Boole (1815-1864) appointed Professor of Mathematics in Queen's College,

Cork, 1849; LL.D. (Dublin, 1852), F.R.S. (1857), D.C.L. (Oxford, 1859). For a biographi-
cal sketch, by Harley, see Brit. Quart. Rev., XLIV (1866), 141-81. See also Proc. Roy.

Soc., xv (1867), vi-xi.
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same day as De Morgan 's Formal Logic.
68 The next year, his article, "The

Calculus of Logic," appeared in the Cambridge Mathematical Journal. This

article summarizes very briefly and clearly the important innovations pro-

posed by Boole. But the authoritative statement of his system is found

in An Investigation of the Laws of Thought, on which are founded the Mathe-

matical Theories of Logic and Probability, published in 1854. 89

Boole's algebra, unlike the systems of his predecessors, is based squarely

upon the relations of extension. The three fundamental ideas upon which

his method depends are: (1) the conception of "elective symbols"; (2) the

laws of thought expressed as rules for operations upon these symbols; (3)

the observation that these rules of operation are the same which would

hold for an algebra of the numbers and I. 90

For reasons which will appear shortly, the "universe of conceivable

objects" is represented by 1. All other classes or aggregates are supposed

to be formed from this by selection or limitation. This operation of electing,

in 1, all the A"'s, is represented by l-x or x; the operation of electing all

the F's is similarly represented by l-y or y, and so on. Since Boole does

not distinguish between this operation of election represented by x, and

the result of performing that operation an ambiguity common in mathe-

maticsa- becomes, in practice, the symbol for the class of all the X's.

Thus x, y, z, etc., representing ambiguously operations of election or classes,

are the variables of the algebra. Boole speaks of them as
"
elective symbols"

to distinguish them from coefficients.

This operation of election suggests arithmetical multiplication: the

'suggestion becomes stronger when we note that it is not confined to 1.

1 x y or xy will represent the operation of electing, first, all the X 's in the

"universe", and from this class by a second operation, all the F's. The

result of these two operations will be the class whose members are both

X's and Y's. Thus xy is the class of the common members of x and y;

xyz, the class of those things which belong at once to x, to y, and to 2,

and so on. And for any x, 1 -x = x.

The operation of "aggregating parts into a whole" is represented by + .

x + y symbolizes the class formed by combining the two distinct classes,

x and y. It is a distinctive feature of Boole's algebra that x and y in x + y

must have no common members. The relation may be read, "that which

88 See De Morgan's note to the article "On Propositions Numerically Definite", Camb.

Phil. Trans., xi (1871), 396.
89 London, Walton and Maberly.
90 This principle appears for the first time in the Laws of Thought. See pp. 37-38.

Work hereafter cited as L. of T.
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is either x or y but not both". Although Boole does not remark it, x + y

cannot be as completely analogous to the corresponding operation of

ordinary algebra as xy is to the ordinary algebraic product. In numerical

algebras a number may be added to itself: but since Boole conceives the

terms of any logical sum to be
"
quite distinct",

91
mutually exclusive classes,

x + x cannot have a meaning in his system. As we shall see, this is very

awkward, because such expressions still occur in his algebra and have to be

dealt with by troublesome devices.

But making the relation x + y completely disjunctive has one advantage

it makes possible the inverse relation of "subtraction". The "separa-

tion of a part, x, from a whole, y", is represented by y x. If x + z =
y,

then since x and z have nothing in common, y x = z and y z = x.

Hence [+ ]
and [ ] are strict inverses.

x + y, then, symbolizes the class of those things which are either members

of x or members of y, but not of both, x-y or xy symbolizes the class of

those things which are both members of x and members of y. x y repre-

sents the class of the members of x which are not members of y the x's

except the y's. [
=

] represents the relation of two classes which have the

same members, i. e., have the same extension. These are the fundamental

relations of the algebra.

The entity (1 x) is of especial importance. This represents the

universe except the x's, or all things which are not x's. It is, then, the

supplement or negative of x.

With the use of this symbolism for the negative of a class, the sum of two

classes, x and y, which have members in common, can be represented by

xy + x(l
-

y} + (1
-

x)y.

The first term of this sum is the class which are both x's and y's', the second,

those which are x's but not y's; the third, those which are y's but not x's.

Thus the three terms represent classes which are all mutually exclusive,

and the sum satisfies the meaning of + . In a similar fashion, x + y may
be expanded to

x(l
-

y} + (l
-

x)y.

Consideration of the laws of thought and of the meaning of these sym-

bols will show us that the following principles hold :

(1) xy = yx What is both x and y is both y and x.

(2) x + y = y + x What is either x or y is either y or x.

91 See L. of T., pp. 32-33.
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(3) z(x + y) = zx + zy That which is both z and (either x or y)

is either both z and x or both z and y.

(4) z(x y) = zx zy That which is both 2 and (x but not y)

is both z and a; but not both z and y.

(5) If ar = y, then 22 =
zi/

2 + x = z + y

x z = y z

(fyx-y=-y + x

This last is an arbitrary convention: the first half of the expression gives

the meaning of the last half.

It is a peculiarity of "logical symbols" that if the operation x, upon 1,

be repeated, the result is not altered by the repetition :

l-x = l-x-x = 1-X'X-x. . ,. Hence we have :

(7) .-c
2 = x

Boole calls this the "index law". 92

All these laws, except (7), hold for numerical algebra. It may be

noted that, in logic, "If a: = y, then zx zy" is not reversible. At first

glance, this may seem to be another difference between numerical algebra

and the system in question. But "If zx =
zy, then x = y" does not hold

in numerical algebra when 2=0. Law (7) is, then, the distinguishing

principle of this algebra. The only finite numbers for which it holds are

and 1. All the above laws hold for an algebra of the numbers and 1. With

this observation, Boole adopts the entire procedure of ordinary algebra,

modified by the law x2 = x, introduces numerical coefficients other than

and 1, and makes use, on occasion, of the operation of division, of the

properties of functions, and of any algebraic transformations which happen

to serve his purpose.
93

This borrowing of algebraic operations which often have no logical

interpretation is at first confusing to the student of logic; and commen-

tators have seemed to smile indulgently upon it. An example will help:

the derivation of the "law of contradiction" or, as Boole calls it, the "law

of duality", from the "index law". 94

92 In Mathematical Analysis of Logic he gives it also in the form x n =
x, but in L. of T.

he avoids this, probably because the factors of x n x (e. g., x3
x) are not always logically

interpretable.
93 This procedure characterizes L. of T. Only and 1, and the fractions which can

be formed from them appear in Math. An. of Logic, and the use of division and of fractional

coefficients is not successfully explained in that book.
94 L. of T., p. 49.
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Since x2 = x, x x2 = 0.

Hence, factoring, x(l x) = 0.

This transformation hardly represents any process of logical deduction.

Whoever says "What is both x and x, x2
, is equivalent to x; therefore what

is both x and not-z is nothing" may well be asked for the steps of his reason-

ing. Nor should we be satisfied if he reply by interpreting in logical terms

the intermediate expression, x x2 = 0.

Nevertheless, this apparently arbitrary way of using uninterpretable

algebraic processes is thoroughly sound. Boole's algebra may be viewed

as an abstract mathematical system, generated by the laws we have noted,

which has two interpretations. On the one hand, the "logical" or "elec-

tive
"
symbols may be interpreted as variables whose value is either numeri-

cal or numerical 1, although numerical coefficients other than and 1 are

admissible, provided it be remembered that such coefficients do not obey

the "index law" which holds for "elective" symbols. All the usual alge-

braic transformations will have an interpretation in these terms. On the

other hand, the "logical" or "elective" symbols may be interpreted as

logical classes. For this interpretation, some of the algebraical processes

of the system and some resultant expressions will not be expressible in terms

of logic. But whenever they are interpretable, they will be valid conse-

quences of the premises, and even when they are not interpretable, any

further results, derived from them, which are interpretable, will also be

valid consequences of the premises.

It must be admitted that Boole himself does not observe the proprieties

of his procedure. His consistent course would have been to develop this al-

gebra without reference to logical meanings, and then to discuss in a thorough

fashion the interpretation, and the limits of that interpretation, for logical

classes. By such a method, he would have avoided, for example, the

difficulty about x + x. We should have x + x = 2x, the interpretation of

which for the numbers and 1 is obvious, and its interpretation for logical

classes would depend upon certain conventions which Boole made and

which will be explained shortly. The point is that the two interpretations

should be kept separate, although the processes of the system need not be

limited by the narrower interpretation that for logical classes. Instead

of making this separation of the abstract algebra and its two interpretations,

Boole takes himself to be developing a calculus of logic; he observes that

its "axioms" are identical with those of an algebra of the numbers and 1;
95

95 L. of T., pp. 37-38.
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hence he applies the whole machinery of that algebra, yet arbitrarily rejects

from it any expressions which are not finally interpretable in terms of logical

relations. The retaining of non-interpretable expressions which can be

transformed into interpretable expressions he compares to "the employ-

ment of the uninterpretable symbol V 1 in the intermediate processes

of trigonometry."
96 It would be a pretty piece of research to take Boole's

algebra, find independent postulates for it (his laws are entirely insufficient

as a basis for the operations he uses), complete it, and systematically investi-

gate its interpretations.

But neglecting these problems of method, the expression of the simple

logical relations in Boole's symbolism will now be entirely clear. Classes

wr
il) be represented by x, y, z, etc.; their negatives, by (1 x), (1 y),

etc. That which is both x and y will be xy; that which is x but not y will

be a:(l y), etc. That which is x or y but not both, will be x + y, or

x(l y} + (1 x)y. That which is x or y or both wr
ill be x + (1 x)y

i. e., that which is x or not x but yor
xy + x(l

-
y) + (1

- x)y

that wrhich is both x and y or x but not y or y but not x. 1 represents the

"universe" or "everything". The logical significance of is determined

by the fact that, for any y, Oy =
: the only class \vhich remains unaltered

by any operation of electing from it whatever is the class "nothing".

Since Boole's algebra is the basis of the classic algebra of logic which

is the topic of the next chapter it will be unnecessary to comment upon

those parts of Boole's procedure which were taken over into the classic

algebra. These will be clear to any who understand the algebra of logic

in its current form or who acquaint themselves with the content of Chapter

II. We shall, then, turn our attention chiefly to those parts of his method

which are peculiar to him.

Boole does not symbolize the relation "x is included in ?/". Conse-

quently the only copula by which the relation of terms in a proposition can

be represented is the relation =. And since all relations are taken in

extension, x = y symbolizes the fact that x and y are classes with identical

membership. Propositions must be represented by equations in which

something is put = or = 1, or else the predicate must be quantified.

Boole uses both methods, but mainly relies upon quantification of the

predicate. This involves an awkward procedure, though one which still

survives the introduction of a symbol v or w, to represent an indefinite

91 L. of T., p. 69.
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class and symbolize "Some". Thus "All x is (some) y" is represented by

x =
vy: "Some x is (some) y", by wx =

vy. If v, or w, were here "the

indefinite class" or "any class", this method would be less objectionable.

But in such cases v, or w, must be very definitely specified: it must be a

class "indefinite in all respects but this, that it contains some members of

the class to whose expression it is prefixed".
97 The universal affirmative

can also be expressed, without this symbol for the indeterminate, as x(l y}

= 0; "All x is y" means "That which is x but not y is nothing". Negative

propositions are treated as affirmative propositions with a negative predi-

cate. So the four typical propositions of traditional logic are expressed as

follows: 98

All x is y: x =
vy, or, x(l y}

= 0.

Xo x is y: x = v(l y), or xy = 0.

Some x is y: vx = w(\ y), or, v = xy.

Some x is not y: vx =
iv(l y}, or, v = x(l y}.

Each of these has various other equivalents which may be readily deter-

mined by the laws of the algebra.

To reason by the aid of this symbolism, one has only to express his

premises explicitly in the proper manner and then operate upon the resultant

equation according to the laws of the algebra. Or, as Boole more explicitly

puts it, valid reasoning requires:
99

"
1st, That a fixed interpretation be assigned to the symbols employed

in the expression of the data; and that the laws of the combination of these

symbols be correctly determined from that interpretation.
"
2nd, That the formal processes of solution or demonstration be con-

ducted throughout in obedience to all the laws determined as above, with-

out regard to the question of the interpretation of the particular results

obtained.

"3rd, That the final result be interpretable in form, and that it be

actually interpreted in accordance with that system of interpretation which

has been employed in the expression of the data."

As we shall see, Boole's methods' of solution sometimes involve an

uninterpretable stage, sometimes not, but there is provided a machinery by
97 L. of T., p. 63. This translation of the arbitrary v by "Some" is unwarranted, and

the above statement is inconsistent with Boole's later treatment of the arbitrary coefficient.

There is no reason why such an arbitrary coefficient may not be null.

98 See Math. An. of Logic, pp. 21-22; L. of T., Chap. iv.

99 L. of T., p. 68.
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which any equation may be reduced to a form which is interpretable. To

comprehend this we must first understand the process known as the develop-

ment of a function. With regard to this, we can be brief, because Boole's

method of development belongs also to the classic algebra and is essentially

the process explained in the next chapter.
100

Any expression in the algebra which involves x or (1 x) may be

called a function of x. A function of x is said to be developed when it has

the form Ax + B(l x}. It is here required that x be a "logical symbol",

susceptible only of the values and 1. But the coefficients, A and B, are

not so limited: A, or B, may be such a "logical symbol" which obeys the

"law of duality", or it may be some number other than or 1, or involve

such a number. If the function, as given, does not have the form Ax
+ B(l x}, it may be put into that form by observing certain interesting

laws which govern coefficients.

Let /(.r)
= Ax + B(l -

x}

Then /(I)
= A-l + B(l -

1) = A

And /(O)
= A-0 + B(l -

0) = B

Hence f(x)
=

/(I) -x +/(0) (1
-

z)

Thus if /(*)
=^ ,

2 x

fm 1 + 1
-2- wm..

1 + - 1
-
2^~l

"

2^o
-

2

Hence f(x)
= 2x+ -

(1 x)

A developed function of two variables, x and y, will have the form:

Axy + Bx(l -
y) + C(l

-
x)y + D(l -

x)(l
-

y)

And for any function, f(x, y}, the coefficients are determined by the law:

f(x,y) =/(!, l).sy+/(l,0).*(l
-

30 +/(0, !)(! -
x)y

+/(0,0)-(1 -*)(!- y)

100 See Math. An. of Logic, pp. 60-69; L. of T., pp. 71-79; "The Calculus of Logic,"

Cambridge and Dublin Math. Jour., in, 188-89. That this same method of development
should belong both to Boole's algebra and to the remodeled algebra of logic, in which +

is not completely disjunctive, is at first surprising. But a completely developed function,

in either algebra, is always a sum of terms any two of which have nothing in common.
This accounts for the identity of form where there is a real and important difference in the

meaning of the symbols.
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Thus if f(x, y}
= ax + 2by,

/(I, 1)
= o-l + 26-l = a + 26

/(I, 0) = a-1 + 26-0 = a

/(O, 1)
= a-0 + 26-1 = 26

/(0,0) = a-0 + 26-0 =

Hence f(x, y)
=

(a + 2b)xy + ax(l y] + 26(1 x)y

An exactly similar law governs the expansion and the determination of

coefficients, for functions of any number of variables. In the words of

Boole: 101

"The general rule of development will . . . consist of two parts, the

first of which will relate to the formation of the constituents of the expansion,

the second to the determination of their respective coefficients. It is as

follows :

"
1st. To expand any function of the symbols x, y, 2 Form a series

of constituents in the following manner: Let the first constituent be the

product of the symbols: change in this product any symbol z into 1 z,

for the second constituent. Then in both these change any other symbol

y into 1 y, for two more constituents. Then in the four constituents

thus obtained change any other symbol x into 1 x, for four new constit-

uents, and so on until the number of possible changes has been exhausted.

"2ndly. To find the coefficient of any constituent If that constituent

involves as a factor, change in the original function x into 1; but if it

involves 1 x as a factor, change in the original function x into 0. Apply

the same rule with reference to the symbols y, z, etc. : the final calculated

value of the function thus transformed will be the coefficient sought."

Two further properties of developed functions, which are useful in

solutions and interpretations, are: (1) The product of any two constituents

is 0. If one constituent be, for example, xyz, any other constituent will

have as a factor one or more of the negatives, 1 x, I y, 1 z.

Thus the product of the two will have a factor of the form x(l x). And

where x is a "logical symbol ", susceptible only of the values and 1, x(l x)

is always 0. And (2) if each constituent of any expansion have the coef-

ficient 1, the sum of all the constituents is 1.

All information which it may be desired to obtain from a given set of

premises, represented by equations, will be got either (1) by a solution, to

determine the equivalent, in other terms, of some "logical symbol" x, or

101 L. of T., pp. 75-76.
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(2) by an elimination, to discover what statements (equations), which are

independent of some term x, are warranted by given equations which in-

volve x, or (3) by a combination of these two, to determine the equivalent

of x in terms of t, u, v, from equations which involve x, t, u, v, and some

other "logical" symbol or symbols which must be eliminated in the desired

result.
"
Formal

"
reasoning is accomplished by the elimination of "middle"

terms.

The student of symbolic logic in its current form knows that any set

of equations may be combined into a single equation, that any equation

involving a term x may be given the form Ax + B(l x) = 0, and that

the result of eliminating x from such an equation is AB = 0. Also, the

solution of any such equation, provided the condition AB = be satisfied,

will be x = B + v(l A), where v is undetermined. Boole's methods

achieve these same results, but the presence of numerical coefficients other

than and 1, as well as the inverse operations of subtraction and division,

necessarily complicates his procedure. And he does not present the matter

of solutions in the form in which we should expect to find it but in a more

complicated fashion which nevertheless gives equivalent results. We have

now to trace the procedures of interpretation, reduction, etc. by which

Boole obviates the difficulties of his algebra which have been mentioned.

The simplest form of equation is that in which a developed function,

of any number of variables, is equated to 0, as:

Ax + B(l -
x) = 0, or,

Axy + Bx(l -
y) + C(l - x)y+D(l -

*)(!
-

y)
= 0, etc.

It is an important property of such equations that, since the product of

any two constituents in a developed function is 0, any such equation gives

any one of its constituents, whose coefficient does not vanish in the develop-

ment, = 0. For example, if we multiply the second of the equations given

by xy, all constituents after the first will vanish, giving Axy = 0. Whence

we shall have xy = 0.

Any equation in which a developed function is equated to 1 may be

reduced to the form in which one member is by the law; If V =
1,

1-7-0.
The more general form of equation is that in which some "logical

symbol", w, is equated to some function of such symbols. For example,

suppose x =
yz, and it be desired to interpret z as a function of x and y.

x = yz gives z = x/y; but this form is not interpretable. We shall, then,
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develop x/y by the law

f(x, y}
=

/(I, 1) -*y +/(!, 0) *(!
-

</) +/(0, !)(!- *)y

+ /(0,0).(1 -x)(l -y}
By this law :

x
If 2 = -

, then
y

3 = xy + -x(l -
2/)

+ 0(l
- aOy+ -

(1
-

or)(l
-

z/)

These fractional coefficients represent the sole necessary difference of Boole's

methods from those at present familiar a difference due to the presence

of division in his system. Because any function can always be de-

veloped, and the difference between any two developed functions, of the

same variables, is always confined to the coefficients. If, then, we can

interpret and successfully deal with such fractional coefficients, one of the

difficulties of Boole's system is removed.

The fraction 0/0 is indeterminate, and this suggests that a proper inter-

pretation of the coefficient 0/0 would be to regard it as indicating an unde-

termined portion of the class whose coefficient it is. This interpretation

may be corroborated by considering the symbolic interpretation of "All

x is y", which is x(l y)
= 0.

If x(l y}
= 0, then x xy and x =

xy.

Whence y = x/x.

Developing x/x, we have y = x + -
(1 x).

If "All x is y", the class y is made up of the class x plus an undetermined

portion of the class not-x. Whence 0/0 is equivalent to an arbitrary

parameter v, which should be interpreted as "an undetermined portion of"

or as "All, some, or none of".

The coefficient 1/0 belongs to the general class of symbols which do not

obey the "index law", x2 = x, or its equivalent, the "law of duality",

x(l x) = 0. At least Boole says it belongs to this class, though the

numerical properties of 1/0 would, in fact, depend upon laws which do not

belong to Boole's system. But in any case, 1/0 belongs with the class of

such coefficients so far as its logical interpretation goes. Any constituent of a

developed function which does not satisfy the index law must be separately

equated to 0. Suppose that in any equation

w = At + P
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w be a "logical symbol", and t be a constituent of a developed function

whose coefficient A does not satisfy the index law, A 2 = A. And let P
be the sum of the remaining constituents whose coefficients do satisfy this

law. Then

wz = W) t
2 =

t, and P2 = P

Since the product of any two constituents of a development is 0,

w2 = (At+P)
z = AW + P2

Hence w = AH + P

Subtracting this from the original equation,

(A -
A*)t = = A(l - A)t

Hence since A(l - A) 4= 0, t =

Hence any equation of the form

is equivalent to the two equations

w = P + vR and S =

which together represent its complete solution.

It will be noted that a fraction, in Boole's algebra, is always an am-

biguous function. Hence the division operation must never be performed:

the value of a fraction is to be determined by the law of development only,

except for the numerical coefficients, which are elsewhere discussed. We
have already remarked that ax = bx does not give a = b, because x may
have the value 0. But we may transform ax = bx into a = bx/x and

determine this fraction by the law

f(b,x) =/(!, l).te+/(l,0)-6(l -*)+/(0, !)(! -b)x

+/(0,0).(1 -&)(! -*)
We shall then have

and this is not, in general, equivalent to b. Replacing 0/0 by indeterminate

coefficients, v and w, this gives us,

If ax = bx, then

a = bx + vb(l x) + w f l 6)(1 x}
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And this result is always valid. Suppose, for example, the logical equation

rational men = married men

and suppose we wish to discover who are the rational beings. Our equation

will not give us

rational = married

but instead

rational = married men + v - married non-men + w non-married non-men

That is, our hypothesis is satisfied if the class "rational beings" consist of

the married men together with any portion (which may be null) of the

class "married women" and a similarly undetermined portion of the class

"unmarried women".

If we consider Boole's system as an algebra of and 1, and the fact that

for any fraction, xjy,

x 1
- = xy + -x(l -

y) + ~(1 -aO(l -
y)

we shall find, by investigating the cases

(1) x = 1 and y =
1; (2) x =

1, y = 0; (3) x = 0, y =
1;

and (4) x = 0, y = 0,

that it requires these three possible cases:

Or, to speak more accurately, it requires that 0/0 be an ambiguous function

susceptible of the values and 1.

Since there are, in general, only four possible coefficients, 1, 0, 0/0, and

such as do not obey the index law, of which 1/0 is a special case, this means

that any equation can be interpreted, and the difficulty due to the presence

of an uninterpretable division operation in the system has disappeared.

And any equation can be solved for any "logical symbol" x, by trans-

ferring all other terms to the opposite side of the equation, by subtraction

or division or both, and developing that side of the equation.

Any equation may be put in the form in which one member is by
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bringing all the terms to one side. When this is done, and the equation

fully expanded, all the coefficients which do not vanish may be changed to

unity, except such as already have that value. Boole calls this a "rule of

interpretation".
102 Its validity follows from two considerations: (1) Any

constituent of an equation with one member 0, whose coefficient does not

vanish in development, may be separately equated to 0; (2) the sum of

the constituents thus separately equated to will be an equation with one

member in which each coefficient will be unity.

Negative coefficients may be eliminated by squaring both sides of any

equation in which they appear. The "logical symbols" in any function

are not altered by squaring, and any expression of the form (1 x), where

# is a "logical symbol", is not altered, since it can have only the values

and 1 . Hence no constituent is altered, except that its coefficient may be

altered. And any negative coefficient will be made positive. No new

terms will be introduced by squaring, since the product of any two terms

of a developed function is always null. Hence the only change effected

by squaring any developed function is the alteration of any negative coef-

ficients into positive. Their actual numerical value is of no consequence,

because coefficients other than 1 can be dealt with by the method described

above.

For reducing any two or more equations to a single equation, Boole

first proposed the "method of indeterminate multipliers",
103

by which

each equation, after the first, is multiplied by an arbitrary constant and the

equations then added. But these indeterminate multipliers complicate the

process of elimination, and the method is, as he afterward recognized, an

inferior one. More simply, such equations may be reduced, by the methods

just described, to the form in which one member is 0, and each coefficient

is 1. They may then be simply added; the resulting equation will combine

the logical significance of the equations added.

Any "logical symbol" which is not wanted in an equation may be

eliminated by the method which is familiar to all students of symbolic

logic. To eliminate x, the equation is reduced to the form

-
x} =

The result of elimination will be104

AB =
102 L. of T., p. 90.
103 See Math. An. of Logic, pp. 78-81; L. of T., pp. 115-120.
104 See L. of T., p. 101. We do not pause upon this or other matters which will be

entirely clear to those who understand current theory.
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By these methods, the difference between Boole's algebra and the classic

algebra of logic which grew out of it is reduced to a minimum. Any logical

results obtainable by the use of the classic algebra may also be got by
Boole's procedures. The difference is solely one of ease and mathematical

neatness in the method. Two important laws of the classic algebra which

do not appear among Boole's principles are:

(1) x + x = x, and (2) x = x + xy

These seem to be inconsistent with the Boolean meaning of +
; the first of

them does not hold for x =
1; the second does not hold for a- = 1, y = 1.

But although they do not belong to Boole's system as an abstract algebra,

the methods of reduction which have been discussed will always give x in

place of x + x or of x + xy, in any equation in which these appear. The

expansion of x + x gives 2x; the expansion of x + xy gives 2xy + x(l y).

By the method for dealing with coefficients other than unity, 2x may be

replaced in the equation by x, and 2xy + x(l y} by xy + x(l y}, which

is equal to x.

The methods of applying the algebra to the relations of logical classes

should now be sufficiently clear. The application to propositions is made

by the familiar device of correlating the "logical symbol", x, with the

times when some proposition, X. is true, xy will represent the times wrhen

X and Y are both true; x(l y}, the times when X is true and Y is false,

and so on. Congruent with the meaning of +
, x + y will represent the

times when either X or Y (but not both) is true. In ordr to symbolize

the times when X or Y or both are true, we must write x + (1 x)y, or

xy + x(l y*)
+ (1 x)y. 1, the "universe", will represent "all times" or

"always"; and will be "no time" or "never", x = 1 will represent

"X is always true"; x = or (1 x) =
1, "X is never true, is always

false".

Just as there is, with Boole, no symbol for the inclusion relation of

classes, so there is no symbol for the implication relation of propositions.

For classes, "All X is 7" or
"X is contained in Y" becomes x =

vy. Cor-

respondingly, "All times when X is true are times when Y is true" or "If

A" then Y" or "X implies Y" is x =
vy. x = y will mean, "The times

when X is true and the times when Y is true are the same" or
"X implies

Yand Y implies X".

The entire procedure for "secondary propositions" is summarized as

follows: 105

i"5 L. of T., p. 178.
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"Rule. Express symbolically the given propositions. . . .

"Eliminate separately from each equation in which it is found the

indefinite symbol .

"Eliminate the remaining symbols which it is desired to banish from

the final solution : always before elimination, reducing to a single equation

those equations in which the symbol or symbols to be eliminated are found.

Collect the resulting equations into a single equation [one member of which

is 0], F = 0.

"Then proceed according to the particular form in which it is desired

to express the final relation, as

1st. If in the form of a denial, or system of denials, develop the

function V, and equate to all those constituents whose coefficients do

not vanish.

2ndly. If in the form of a disjunctive proposition, equate to 1 the

sum of those constituents whose coefficients vanish.

3rdly. If in the form of a conditional proposition having a simple

element, as x or 1 x, for its antecedent, determine the algebraic

expression of that element, and develop that expression.

4thly. If in the form of a conditional proposition having a com-

pound expression, as xy, xy+ (I .r)(l
--

y), etc., for its antecedent,

equate that expression to a new symbol t, and determine t as a developed

function of the symbols which are to appear in the consequent. . . .

5thly. ... If it only be desired to ascertain whether a particular

elementary proposition x is true or false, we must eliminate all the

symbols but x; then the equation x = 1 will indicate that the proposi-

tion is true, x = that it is false, = that the premises are insuf-

ficient to determine whether it is true or false."

It is a curious fact that the one obvious law of an algebra of and 1

which Boole does not assume is exactly the law which would have limited

the logical interpretation of his algebra to propositions. The law

If x =}= 1> x = and if x =(= 0, x = 1

is exactly the principle which his successors added to his system when it

is to be considered as a calculus of propositions. This principle would have

made his system completely inapplicable to logical classes.

For propositions, this principle means,
"
If x is not true, then x is false,

and if x is not false, it is true". But careful attention to Boole's interpre-

tation for "propositions" shows that in his system x = should be inter-
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preted "x is false at all times (or in all cases)", and x = 1 should be in-

terpreted "x is true at all times". This reveals that fact that what Boole

calls
"
propositions

"
are what we should now call

"
prepositional functions ",

that is, statements which may be true under some circumstances and false

under others. The limitation put upon what we now call
"
propositions

"-

namely that they must be absolutely determinate, and hence simply true

or false does not belong to Boole's system. And his treatment of "prepo-

sitional symbols" in the application of the algebra to probability theory

gives them the character of
"
prepositional functions" rather than of our

absolutely determinate propositions.

The last one hundred and seventy-five pages of the Laws of Thought

are devoted to an application of the algebra to the solution of problems in

probabilities.
106 This application amounts to the invention of a new

method a method whereby any logical analysis involved in the problem

is performed as automatically as the purely mathematical operations.

We can make this provisionally clear by a single illustration :

All the objects belonging to a certain collection are classified in three

ways as ^4's or not, as B's or not, and as C's or not. It is then found

that (1) a fraction m/n of the ^4's are also B's and (2) the C"s consist of the

^4's which are not B's together with the B's which are not A's.

Required: the probability that if one of the A's be taken at random,

it will also be a C.

By premise (2)

C = A(l -
)
+ (!

- A)B

Since A, B, and C are "logical symbols", A* = A and A(l A} = 0.

Hence, AC = A\l - 5) + .4(1
- A)B = A(\ -

B).

The A's which are also C"s are identical with the ^4's which are not B's.

Thus the probability that a given A is also a C is exactly the probability

that it is not a B; or by premise (1), 1 m/n, which is the required solution.

In any problem concerning probabilities, there are usually two sorts of

difficulties, the purely mathematical ones, and those involved in the logical

analysis of the situation upon which the probability in question depends.

The methods of Boole's algebra provide a means for expressing the relations

of classes, or events, given in the data, and then transforming these logical

106 Chap. 16 ff. See also the Keith Prize essay "On the Application of the Theory of

Probabilities to the Question of the Combination of Testimonies or Judgments", Trans.

Roy. Soc. Edinburgh, xxi, 597 ff. Also a series of articles in Phil. Mag., 1851-54 (see

Bibl). An article on the related topic "Of Propositions Numerically Definite" appeared

posthumously; Camb. Phil. Trans., xr, 396-411.
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equations so as to express the class which the quaesitum concerns as a func-

tion of the other classes involved. It thus affords a method for untangling

the problem often the most difficult part of the solution.

The parallelism between the logical relations of classes as expressed in

Boole's algebra and the corresponding probabilities, numerically expressed,

is striking. Suppose x represent the class of cases (in a given total) in which

the event X occurs or those which "are favorable to" the occurrence of

X.107 And let p be the probability, numerically expressed, of the event X.

The total class of cases will constitute the logical "universe", or 1; the

null class will be 0. Thus, if x = 1 if all the cases are favorable to X
then p = 1 the probability of X is "certainty". If x = 0, then p = 0.

Further, the class of cases in which X does not occur, will be expressed by
1 x; the probability that X will not occur is the numerical 1 p. Also,

x+ (1 x} = 1 and p+ (1 p*)
= 1.

This parallelism extends likewise to the combinations of two or more

events. If x represent the class of cases in which X occurs, and y the class

of cases in which Y occurs, then xy will be the class of cases in which X
and 7 both occur; #(1 y}, the cases in which X occurs without Y;

(1 x)y, the cases in which Y occurs without X; (1 z)(l y), the

cases in which neither occurs; x(l y} + y(l x), the cases in which

X or 7 occurs but not both, and so on. Suppose that X and Y are
"
simple

"

and "independent" events, and let p be the probability of X, q the prob-

ability of y. Then we have:

Combination of events Corresponding probabilities

expressed in Boole's algebra numerically expressed

xy pq

x(l
-

y} p(l
-

q)

(1
-

x}y (1
-

q)p

(1
-

.r)(l
-

y) (I- p)(l
-

<?)

x(l
-

*/)
+ (!

-
x}y p(l

-
q) + (1

-
p)q

Etc. etc.

In fact, this parallelism is complete, and the following rule can be

formulated: 108

107 Boole prefers to consider x as representing the times when a certain proposition,

asserting an occurrence, will be true. But this interpretation comes to exactly the same

thing.
108 L. of T., p. 258.
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"If p, q, r, . . . are the respective probabilities of unconditioned simple

events, x, y, z, . . .
, the probability of any compound event F will be [F],

this function [F] being formed by changing, in the function F, the symbols

x, y, z, . . . into p, q, r, . . . .

"According to the well-known law of Pascal, the probability that if

the event F occur, the event V will occur with it, is expressed by a fraction

whose numerator is the probability of the joint occurrence of F and V,
and whose denominator is the probability of the occurrence of F. We can

then extend the rule just given to such cases :

"The probability that if the event F occur, any other event V wT
ill

[FF'j
also occur, will be

, where [F F'] denotes the result obtained by

multiplying together the logical functions F and V , and changing in the

result x, y, z, . . . into p, q, r, . . . ."

The inverse problem of finding the absolute probability of an event

when its probability upon a given condition is known can also be solved.

Given: The probabilities of simple events x, y, z, . . . are respectively

p, q, r, . . . when a certain condition F is satisfied.

To determine : the absolute probabilities I, m, n, . . . of x, y, z, . . . .

By the rule just given,

[xV\

'

[yV] [zV]= Tt r= n = T PTP

[F] [FJ [F]

And the number of such equations will be equal to the number of unknowns,

I, m, n, . . . to be determined.109 The determination of any logical expres-

sion of the form xV is peculiarly simple since the product of x into any

developed function F is the sum of those constituents of F which contain x

as a factor. For example :

if F = xyz + x(l y)z + (1 x)y(l z) + (1 x) (1 y)z,

xV = xyz + x(l y)z

yV = xyz + (1
-

x)y(l
-

z}

zV = xyz + x(l y)z + (1 z)(l y}z

Thus any equation of the form

[xV]

109 On certain difficulties in this connection, and their solution, see Cayley, "On a

Question in the Theory of Probability" (with discussion by Boole), Phil. Mag., Ser. IV,

xxm (1862), 352-65, and Boole, "On a General Method in the Theory of Probabilities",

ibid., xxv (1863), 313-17.
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is readily determined as a numerical equation. Boole gives the following

example in illustration: ll

"Suppose that in the drawings of balls from an urn, attention had only

been paid to those cases in which the balls drawn were either of a particular

color, 'white,' or of a particular composition, 'marble,' or were marked by
both of these characters, no record having been kept of those cases in which

a ball which was neither white nor of marble had been drawn. Let it then

have been found, that whenever the supposed condition was satisfied, there

was a probability p that a white ball would be drawn, and a probability q

that a marble ball would be drawn: and from these data alone let it be

required to find the probability m that in the next drawing, without refer-

ence at all to the condition above mentioned, a white ball will be drawn;

&lso a probability n that a marble ball will be drawn.

"Here if x represent the drawing of a white ball, y that of a marble

ball, the condition V will be represented by the logical function

xy + x(l
- y)+(l -

x)y

Hence we have

xV = xy + x(l y)
= x

yV = xy+(l -
x)y = y

Whence

[xV] = m, [yV] = n

and the final equations of the problem are

m
mn + ra(l n) + (1 m)n

n

mn + m(l n) + (1 m)n

from which we find

p+ q 1 p + q I

m = -
,

n = -

q p

... To meet a possible objection, I here remark that the above reasoning

does not require that the drawings of a white and a marble ball should be

independent, in virtue of the physical constitution of the balls.

"In general, the probabilities of any system of independent events

being given, the probability of any event X may be determined by finding a

logical equation of the form

x = A+OB +
^c+

ID

110 L. of T., p. 262. I have slightly altered the illustration by a change of letters.
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where A, B, C, and D are functions of the symbols of the other events.

As has already been shown, this is the general type of the logical equation,

and its interpretation is given by

x = A + vC, where v is arbitrary and

D =

By the properties of constituents, we have also the equation,

A + B+C + D = 1

and , since D = 0,

A+B + C = 1

A + B + C thus gives the
'

universe
'

of the events in question, and the prob-

abilities given in the data are to be interpreted as conditioned by A + B + C
=

1, since D = is the condition of the solution x = A + vC. If the given

probability of some event S is p, of T is q, etc., then the supposed 'absolute'

probabilities of S, T, etc., may be determined by the method which has

been described. Let V = A + B + C, then

[V] [tV]

[V]

"

[V]

"

where [sV], [tV], etc. are the "absolute probabilities" sought. These,

being determined, may be substituted in the equation

\A + vC]
Prob. w =

which will furnish the required solution.

"The term vC will appear only in cases where the data are insufficient

to determine the probability sought. Where it does appear, the limits of

this probability may be determined by giving v the limiting values, and 1.

Thus

[A]
Lower limit of Prob. w =

Upper limit

[V]

[A + C]

[V]

With the detail of this method, and with the theoretical difficulties of

its application and interpretation, we need not here concern ourselves.

Suffice it to say that, with certain modifications, it is an entirely workable

method and seems to possess certain marked advantages over those more

generally in use. It is a matter of surprise that this immediately useful

application of symbolic logic has been so generally overlooked.
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VI. JEVONS

It has been shown that Boole's "calculus of logic" is not so much a

system of logic as an algebra of the numbers and 1, some of whose ex-

pressions are capable of simple interpretation as relations of logical classes,

or propositions, and some of whose transformations represent processes of

reasoning. If the entire algebra can, with sufficient ingenuity, be inter-

preted as a system of logic, still Boole himself failed to recognize this fact,

and this indicates the difficulty and unnaturalness of some parts of this

interpretation.

Jevons111
pointed a way to the simplification of Boole's algebra, dis-

carding those expressions which have no obvious interpretation in logic,

and laying down a procedure which is just as general and is, in important

respects, superior. In his first book on this subject, Jevons says:
112

"So long as Professor Boole's system of mathematical logic was capable

of giving results beyond the power of any other system, it had in this fact

an impregnable stronghold. Those who were not prepared to draw the

same inferences in some other manner could not quarrel with the manner

of Professor Boole. But if it be true that the system of the foregoing

chapters is of equal power with Professor Boole's system, the case is altered.

There are now twro systems of notation, giving the same formal results, one

of which gives them with self-evident force and meaning, the other by dark

and symbolic processes. The burden of proof is shifted, and it must be

for the author or supporters of the dark system to show that it is in some

way superior to the evident system."

He sums up the advantages of his system, compared with Boole's, as

follows :

113

"
1 . Every process is of self-evident nature and force, and governed by

laws as simple and primary as those of Euclid's axioms.

"2. The process is infallible, and gives us no uninterpretable or anom-

alous results.

"3. The inferences may be drawn with far less labor than in Professor

Boole's system, which generally requires a separate computation and

development for each inference."

111 William Stanley Jevons (1835-1882), B.A., M.A. (London), logician and economist;

professor of logic and mental and moral philosophy and Cobden professor of political

economy in Owens College, Manchester, 1866-76; professor of political economy, Uni-

versity College, London, 1876-80.
112 Pure Logic, or the Logic of Quality apart from Quantity, p. 75.
113

Ibid., p. 74.
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The third of these observations is not entirely warranted. Jevons

unduly restricts the operations and methods of Boole in such wise that

his own procedure is often cumbersome and tedious where Boole's would

be expeditious. Yet the honor of first pointing out the simplifications

which have since been generally adopted in the algebra of logic belongs to

Jevons.

He discards Boole's inverse operations, a b and a/b, and he interprets

the sum of a and b as "either a or 6, where a and b are not necessarily

exclusive classes". (We shall symbolize this relation by a + b: Jevons has

A + B or A I -B.y
u

Thus, for Jevons, a + a = a, whereas for Boole a + a

is not interpretable as any relation of logical classes, and if it be taken as

an expression in the algebra of and 1, it obeys the usual arithmetical laws,

so that a + a = 2a. As has been indicated, this is a source of much awk-

ward procedure in Boole's system. The law a + a = a eliminates numerical

coefficients, other than and 1, and this is a most important simplification.

Jevons supposes that the fundamental difference between himself and

Boole is that Boole's system, being mathematical, is a calculus of things

taken in their logical extension, while his own system, being "pure logic",

is a calculus of terms in intension. It is true that mathematics requires

that classes be taken in extension, but it is not true that the calculus of

logic either requires or derives important advantage from the point of view

of intension. Since Jevons's system can be interpreted in extension without

the slightest difficulty, we shall ignore this supposed difference.

The fundamental ideas of the system are as follows:

(1) a b denotes that which is both a and b, or (in intension) the sum

of the meanings of the two terms combined.

(2) a + b denotes that which is either a or b or both, or (in intension) a

term with one of two meanings.
115

(3) a = b a is identical wr

ith 6, or (in intension) a means the same as b.

(4) -b Not-6, the negative of b, symbolized in Boole's system by

1 - 6.
116

(5) According to Jevons, indicates that which is contradictory or

"excluded from thought". He prefers it to appear as a factor rather than

114 A + B in Pure Logic; A'
\

' B in the other papers. (See Bibl.)
116 Jevons would add "but it is not known which". (See Pure Logic, p. 25.) But

this is hardly correct; it makes no difference if it is known which, since the meaning of

a + b does not depend on the state of our knowledge. Perhaps a better qualification would

be "but it is not specified which".
116 Jevons uses capital roman letters for positive terms and the corresponding small

italics for their negatives. Following De Morgan, he calls A and a "contrary" terms.
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by itself. 117 The meaning given is a proper interpretation of the symbol in

intension. Its meaning in extension is the null-class or "nothing", as with

Boole.

Jevons does not use any symbol for the "universe", but writes out the

"logical alphabet". This "logical alphabet", for any number n of ele-

ments, a, b, c, . . .
, consists of the 2 n terms which, in Boole's system, form

the constituents of the expansion of 1. Thus, for two elements, a and 6,

the "logical alphabet" consists of a b, a-b, -ab, and -a-b. For three

terms, x, y, z, it consists of x y z, x y -z, x -y z, x -y -z, x y -z, -x -y z, and

-x -y -z. Jevons usually writes these in a column instead of adding them

and putting the sum = 1 . Thus the absence of 1 from his system is simply

a whim and represents no real difference from Boole's procedure.

The fundamental laws of the system of Jevons are as follows:

(1) If a = b and b c, then a = c.

(2) a b = b a.

(3) a a = a.

(4) a -a = 0.

(5) a + b = b + a.

(6) a + a = a.

(7) a + = a. This law is made use of but is not stated.

(8) a(b + c)
= ab+ ac and (a + b)(c + d)

= ac + ad+bc + bd.

(9) a + a b = a. This law, since called the "law of absorption", allows

a direct simplification which is not possible in Boole. Its analogue for

multiplication

a(a+ 6)
= a

follows from (8), (3), and (9). The law of absorption extends to any

number of terms, so that we have also

a + a b + ac + a b d + . . .
= a

(10) a = a(b + -b)(c + -c) .... This is the rule for the expansion of

any term, a, with reference to any other terms, b, c, etc. For three terms

it gives us

a = a(b + -b) (c + -c) = a b c + a b -c + a -b c + a -b -c

This expansion is identical with that which appears in Boole's system, except

for the different meaning of + . But the product of any two terms of such

an expansion will always have a factor of the form a -a, and hence, by (4),

will be null. Thus the terms of any expansion will always represent classes

117 See Pure Logic, pp. 31-33.
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which are mutually exclusive. This accounts for the fact that, in spite of

the different meaning of +
, developed functions in Boole's system and in

Jevons's always have the same form.

(11) The "logical alphabet" is made up of any term plus its negative,

a + -a. It follows immediately from this and law (10) that the logical

alphabet for any number of terms, a, b, c, . . .
,
will be

(a + -a) (b + -b) (c + -c) . . .

and will have the character which we have described. It corresponds to

the expansion of 1 in Boole's system because it is a developed function and

its terms are mutually exclusive.

A procedure by which Jevons sets great store is the "substitution of

similars", of a for b or b for a when a = b. Not only is this procedure valid

when the expressions in which a and b occur belong to the system, but it

holds good whatever the rational complex in which a and 6 stand. He

considers this the first principle of reasoning, more fundamental than

Aristotle's dictum de omni et nullo.ns In this he is undoubtedly correct,

and yet there is another principle, which underlies Aristotle's dictum, which

is equally fundamental the substitution for variables of values of these

variables. And this procedure is not reducible to any substitution of

equivalents.

The only copulative relation in the system is [.= ]; hence the expression

of simple logical propositions is substantially the same as with Boole:

All a is 6: a = a b

No a is b : a = a -b

Some a is b: c a c ab or U a = V ab

"U" is used to suggest "Unknown".

The methods of working with this calculus are in some respects simpler

than Boole's, in some respects more cumbersome. But, as Jevons claims,

they are obvious while Boole's are not. Eliminations are of two sorts,

"intrinsic" and "extrinsic". Intrinsic eliminations may be performed by

substituting for any part of one member of an equation the whole of the

other. Thus from a = b c d, we get

a = a c d = ab d = ac = a d

This rule follows from the principles a a =
a, ab = b a, and if a =

b,

ac = b c. For example

If a = b c d

a- a = bed-bed = bb-c c-dd = be d-d = ad.

118 See Substitution of Similars, passim.
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Also, in cases where a factor or a term of the form a(b + -6), or of the form

a -a, is involved, eliminations may be performed by the rules a(b + -6) = a

and a -a = 0.

Extrinsic elimination is that simplification or "solution" of equations

which may occur when two or more are united. Jevons does not add or

multiply such equations but uses them as a basis for striking out terms in

the same "logical alphabet".

This method is equivalent, in terms of current procedures, to first

forming the expansion of 1 (which contains the terms of the logical alphabet)

and then putting any equations given in the form in which one member

is and "subtracting" them from the expansion of 1. But Jevons did not

hit upon the current procedures. His own is described thus: m

"1. Any premises being given, form a combination containing every

term involved therein. Change successively each simple term of this

into its contrary [negative], so as to form all the possible combinations of

the simple terms and their contraries. [E. g., if a, b, and c are involved,

form the "logical alphabet" of all the terms in the expansion of

(a + -a) (6 + -b) (c + -c).]

"2. Combine successively each such combination [or term, as a be,]

with both members of a premise. When the combination forms a con-

tradiction [an expression having a factor of the form (a -a)] with neither

side of a premise, call it an included subject of the premise; when it forms a

contradiction with both sides, call it an excluded subject of the premise;

when it forms a contradiction with one side only, call it a contradictory com-

bination or subject, and strike it out.

"We may call an included or excluded subject a possible subject as

distinguished from a contradictory combination or impossible subject.

"3. Perform the same process with each premise. Then a combination

is an included subject of a series of premises, when it is an included subject

of any one; it is a contradictory subject when it is a contradictory subject

of any one; it is an excluded subject when it is an excluded subject of

every premise.

"4. The expression of any term [as a or 6] involved in the premises

consists of all the included and excluded subjects containing the term,

treated as alternatives [in the relation +
].

"5. Such expressions may be simplified by reducing all dual terms [of

119 Pure Logic, pp. 4446.
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the form a(b + -b) ], and by intrinsic elimination of all terms not required

in the expression.
"
6. When it is observed that the expression of a term contains a com-

bination which would not occur in the expression of any contrary of that

term, we may eliminate the part of the combination common to the term

and its expression. . . .

"7. Unless each term of the premises and the contrary of each appear

in one or other of the possible subjects, the premises must be deemed in-

consistent or contradictory. Hence there must always remain at least two

possible subjects.

"Required by the above process the inferences of the premise a = b c.

"The possible combinations of the terms a, b, c, and their contraries

are as given [in the column at the left, which is, for this case, the 'logical

alphabet']. Each of these being combined with both sides of the premise,

we have the following results:

ab c ab c = ab c abc included subject

ab-c ab -c = ab c -c = ab -c contradiction

a-b c a-b c = ab -b c = a-b c contradiction

a -b -c a-b -c = a b -b c -c = a-b -c contradiction

-abc = a-ab c = -ab c -abc contradiction

-ab-c = a -a b -c -ab c -c = -ab-c excluded subject

-a-b c = a -a -b c = -a b -b c =0 -a-b c excluded subject

-a-b -c = a -a -b -c = -ab -b c -c = -a -b -c excluded subject

"
It appears, then, that the four combinations ab-c to -abc are to

be struck out, and only the rest retained as possible subjects. Suppose we

now require an expression for the term -b as inferred from the premise

a = b c. Select from the included and excluded subjects such as contain -b,

namely -a -b c and -a -b -c.

" Then -b = -a-b c + -a -b -c, but as -a c occurs only with -b, and

not with b, its contrary, we may, by Rule 6, eliminate -b from -a-b c;

hence -b = -a c + -a -b -c."

This method resembles nothing so much as solution by means of the

Venn diagrams (to be explained in Chapter III). The "logical alphabet"

is a list of the different compartments in such a diagram; those marked

"contradiction" are the ones which would be struck out in the diagram by

transforming the equations given into the form in which one member is 0.



78 A Survey of Symbolic Logic

The advantage which Jevons claims for his method, apart from its obvious-

ness, namely, that the solutions for different terms do not require to be

separately performed, is also an advantage of the diagram, which exhibits

all the possibilities at once.

If any problem be worked out by this method of Jevons and also that

of Boole, it will be found that the comparison is as follows: The "logical

alphabet" consists of the terms which when added give 1, or the universe.

Any term marked "contradiction" will, by Boole's method, have the coef-

ficient or 1/0; any term marked "included subject" will have the coef-

ficient 1; any marked "excluded subject" will have the coefficient 0/0, or v

where v is arbitrary. If, then, we remember that, according to Boole,

terms with the coefficient 1/0 are equated to and thus eliminated, we

see that the two methods give substantially the same results. The single

important difference is in Boole's favor: the method of Jevons does not

distinguish decisively between the coefficients 1 and V. If, for example,

the procedure of Jevons gives x = x -y z, Boole's will give either x = -y z

or x = v-y z.

One further, rather obvious, principle may be mentioned :

12

Any subject of a proposition remains an included, excluded, or con-

tradictory subject, after combination with any unrelated terms. This

means simply that, in any problem, the value of a term remains its value

as a factor when the term is multiplied by any new terms which may be

introduced into the problem. In a problem involving a, b, and c, let

a -b c be a "contradictory" term. Then if x be introduced, a-bcx and

a -b c ~-x will be "contradictory".

On the whole Jevons's methods are likely to be tedious and have little

of mathematical nicety about them. Suppose, for example, we have three

equations involving altogether six terms. The "logical alphabet" will

consist of sixty-four members, each of which will have to be investigated

separately for each equation, making one hundred and ninety-two separate

operations. Jevons has emphasized his difference from Boole to the extent

of rejecting much that would better have been retained. It remained for

others, notably Mrs. Ladd-Franklin and Schroder, to accept Jevons's

amended meaning of addition and its attendant advantages, yet retain

Boole's methods of development and similar methods of elimination and

solution. But Jevons should have credit for first noting the main clue to

this simplification the laws a + a = a and a + a b = a.

120 Pure Logic, p. 48.
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VII. PEIRCE

The contributions of C. S. Peirce 121 to symbolic logic are more numerous

and varied than those of any other writer at least in the nineteenth

century. He understood how to profit by the work of his predecessors,

Boole and De Morgan, and built upon their foundations, and he anticipated

the most important procedures of his successors even when he did not

work them out himself. Again and again, one finds the clue to the most

recent developments in the writings of Peirce. These contributions may
be summed up under three heads: (1) He improved the algebra of Boole

by distinguishing the relations which are more characteristic of logical

classes (such as multiplication in Boole's algebra) from the relations which

are more closely related to arithmetical operations (such as subtraction and

division in Boole). The resulting algebra has certain advantages over the

system of Jevons because it retains the mathematical methods of develop-

ment, transformation, elimination, and solution, and certain advantages

over the algebra of Boole because it distinguishes those operations and

relations which are always interpretable for logical classes. Also Peirce

introduced the "illative" relation, "is contained in", or "implies", into

symbolic logic. (2) Following the researches of De Morgan, he made

marked advance in the treatment of relations and relative terms. The

method of dealing with these is made more precise and "mathematical",

and the laws which govern them are related to those of Boole's algebra of

classes. Also the method of treating "some" and "all" propositions as

sums (2) and products (II) respectively of "propositions" containing

variables was here first introduced. This is the historic origin of "formal

implication" and all that has been built upon it in the more recent develop-

ment of the logic of mathematics. (3) Like Leibniz, he conceived symbolic

logic to be the science of mathematical form in general, and did much to

revive the sense of logistic proper, as we have used that term. He worked

out in detail the derivation of various multiple algebras from the calculus

of relatives, and he improved Boole's method of applying symbolic logic to

problems in probability.

121 Charles Saunders Peirce (1839-1914), son of Benjamin Peirce, the celebrated

mathematician, A.B. (Harvard, 1859), B.S. (Harvard, 1863), lecturer in logic at Johns

Hopkins, 1890- ?. For a number of years, Peirce was engaged in statistical researches

for the U. S. Coast Survey, and was at one time head of the Department of Weights and

Measures. His writings cover a wide variety of topics in the history of science, meta-

physics, mathematics, astronomy, and chemistry. According to William James, his

articles on "Some Illustrations of the Science of Logic", Pop. Sci. Mo., 1877-78, are the

source of pragmatism.
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We shall take up these contributions in the order named.

The improvement of the Boolian algebra is set forth mainly in the

brief article, "On an Improvement in Boole's Calculus of Logic",
122 and in

two papers, "On the Algebra of Logic".
123

It will be remembered that Boole's calculus has four operations, or rela-

tions: a + b indicates the class made up of the two mutually exclusive classes,

a and b; [ ] is the strict inverse of [
+

], so that if x + b = a, then x = a 6;

ax b or a b denotes the class of those things which are common to a and b
;

and division is the strict inverse of multiplication, so that if x b = a, then

x =
a/6. These relations are not homogeneous in type. Boole's [

+
]

and
[ ]

have properties which approximate closely those of arithmetical

addition and subtraction. If [n]x indicate the number of members of the

class x,

[n]a + [n]b [n](a+ 6)

because a and 6 are mutually exclusive classes, and every member of a

is a member of (a + 6) and every member of b is a member of (a + 6). This

relation, then, differs from arithmetical addition only by the fact that

a and b are not necessarily to be regarded as numbers or quantities. Simi-

larly,

[n]a [n]b =
[n](a 6)

But in contrast to this, for Boole's a x b or a b,

[n]a x [n]b = [n](a 6)

will not hold except for and 1 : this relation is not of the type of its arith-

metical counterpart. And the same is true of its inverse, a/6. Thus, in

Boole's calculus, addition and subtraction are relations of the same type

as arithmetical addition and subtraction; but multiplication and division

are different in type from arithmetical multiplication and division.

Peirce rounds out the calculus of Boole by completing both sets of these

relations, adding multiplication and division of the arithmetical type, and

addition and subtraction of the non-arithmetical type.
124 The general

character of these relations is as follows :

122 Proc. Amer. Acad., vu, 250-61. This paper will be referred to hereafter as "Boole's

Calculus ".

123 Amer. Jour. Math., in (1880), 15-57, and vu (1885), 180-202. These two papers
will be referred to hereafter as Alg. Log. 1880, and Alg. Log. 1885, respectively.

124 "Boole's Calculus," pp. 250-54.
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A. The
"'

N on-Arithmetical" or Logical Relations

(1) a + b denotes the class of those things which are either a's or 6's or

both.

(2) The inverse of the above, a \-b, is such that if x + 6 = a, then

x = a \-b.

Since x and b, in x + b, need not be mutually exclusive classes, a \- b is

an ambiguous function. Suppose x + b = a and all 6 is x. Then

a h b = x, and a \- b = a

Thus a (- b has an upper limit, a. But suppose that x + b a and no b

is x. Then a \- b coincides with a b (a which is not 6) i. e.,

a \- b = x, and a \- b = a b

Thus a \- b has a lower limit, a b, or (as we elsewhere symbolize it)

a -b. And in any case, a \- b is not interpretable unless all 6 is a, the

class b contained in the class a. We may summarize all these facts by

a \- b = a -b + v a b + [0] -a b

where v is undetermined, and [0] indicates that the term to which it is

prefixed must be null.

(3) a b denotes the class of those things which are both a's and 6's.

This is Boole's a b.

(4) The inverse of the preceding, a/6 such that if 6 x =
a, then x = a/6.

This is Boole's a/6.

a/6 is an ambiguous function. Its upper limit is a + -6; its lower

limit, a. 126 It is uninterpretable unless 6 is contained in a i. e.,

a/6 = a 6 + v -a -6 + [0] a -6

B. The "Arithmetical" Relations

(5) a + 6 denotes the class of those things which are either a's or 6's,

where a and 6 are mutually exclusive classes. This is Boole's a + 6.

a + 6 = a -6 + -a 6 + [0] a 6

(6) The inverse of the preceding, a 6 signifies the class "a which

is not 6". As has been mentioned, it coincides with the lower limit of a h6.

(7) a X 6 and a -i- 6 are strictly analogous to the corresponding relations

125 peirce indicates the logical relations by putting a comma underneath the sign of

the relation: that which is both a and b is a, b.

126 Peirce indicates the upper limit by a : 6, the lower limit by a -f- b. These occur

only in the paper "Boole's Calculus".

7
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of arithmetic. They have no such connection with the corresponding

"logical" relations as do a + 6 and a b. Peirce does not use them

except in applying this system to probability theory.

For the "logical" relations, the following familiar laws are stated: m
a+ a = a a a = a

a + b = b + a ab = b a

(a + 6) + c = a + (b + c) (a 6)c = a(b c)

(a+b)c = ac + b c a b + c = (a + c) (b + c)

The last two are derived from those which precede.

Peirce's discussion of transformations and solutions in this system is

inadequate. Any sufficient account would carry us quite beyond what

he has given or suggested, and require our report to be longer than the

original paper. We shall be content to suggest ways in which the methods

of Boole's calculus can be extended to functions involving those relations

which do not appear in Boole. As has been pointed out, if any function

be developed by Boole's laws,

/(*) =/(!)* +/(())-*,

<p(x, y} =
<p(\, l)-xy + <p(\, ty-x-y + <p(0, !) -xy + <p(Q, 0)- -x-y,

Etc., etc.,

the terms on the right-hand side of these equations will always represent

mutually exclusive classes. That is to say, the difference between the

"logical" relation, +
, and the "arithmetical" relation, +, here vanishes.

Thus any relation in this system of Peirce's can be interpreted by developing

it according to the above laws, provided that we can interpret these rela-

tions when they appear in the coefficients. And the correct interpretation

of these coefficients can always be discovered.

Developing the "logical" sum, x + y, we have,

x + y =
(1 + 1) -x y + (1 + 0) -x -y + (0 + 1) -x y + (0 + 0) -x-y

Comparing this with the meaning of x + y given above, we find that (1+1)
=

1, (1 + 0)
=

1, (0+1) =
1, and (0 + 0) = 0.

Developing the "logical" difference, a \-b, we have

x \-y
=

(I |-l)-*yi-(l hO)-z-2/+(0 hl)--zy+(0 hO)- -x-y

Comparing this with the discussion of x \-y above, we see that (1 1-1) is

equivalent to the undetermined coefficient v; that (1 hO) = 1; that

127 "Boole's Calculus," pp. 250-53.
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(0 hi) is equivalent to [0], which indicates that the term to which it is

prefixed must be null, and that (0 |-0)
= 0.

The interpretation of the "arithmetical" relations, X and H-, in coef-

ficients of class-symbols is not to be attempted. These are of service only

in probability theory, where the related symbols are numerical in their

significance.

The reader does not require to be told that this system is too complicated

to be entirely satisfactory. In the
"
Description of a Notation for the

Logic of Relatives", all these relations except -f- are retained, but in later

papers we find only the "logical" relations, a+ b and a b.

The relation of "inclusion in" or "being as small as" (which we shall

symbolize by c)
128

appears for the first time in the "Description of a

Notation for the Logic of Relatives".129 Aside from its treatment of

relative terms and the use of the "arithmetical" relations, this monograph

gives the laws of the logic of classes almost identically as they stand in the

algebra of logic today. The following principles are stated.130

(1) If x cy and y cz, then x cz.

(2) If a c b, then there is such a term x that a + x = 6.

(3) If acb, then there is such a term y that b y = a.

(4) If b x = a, then acb.

(5) If acb, (c + a)c(c + 6).

(6) If acb, c a ccb.

(7) If a c b, a c c b c.

(8) a b c a.

(9) xc(x + y).

(10) x + y = y + x.

(11) (x + y) + z = x + (y + z).

(12) x(y + z)
= xy + xz.

(13) xy = yx.

(14) (x y)z = x(yz).

(15) xx = x.

(16) x -x = O.131

(17) x + -x = 1.

128 Peirce's symbol is < which he explains as meaning the same as < but being sim-

pler to write.

129 Memoirs of the Amer. Acad., n. s., ix (1867), 317-78.
130

"Description of a Notation for the Logic of Relatives," loc. tit., pp. 334-35, 338-39,
342.

131 In this paper, not-x is symbolized by nx
, "different from every x," or by a~x.
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(18) z + = x.

(19) ar + 1 = 1.

(20) <p(x)
= <p(l)-x + <p(Q)' -x.

(21) ,(*)
= Ml) + *][?(0) + ^].

(22) If 9(x) =0, ?(1) *(()) =0.

(23) If v (x)
=

1, ?(1)+?(0) = 1.

The last of these gives the equation of condition and the elimination re-

sultant for equations with one member 1. Boole had stated (22), which

is the corresponding law for equations with one member 0, but not (23).

Most of the above laws, beyond (9), had been stated either by Boole or

by Jevons. (1) to (9) are, of course, novel, since the relation c appears

here for the same time since Lambert.

Later papers state further properties of the relation c
, notably,

If x c y, then -y c -x.

And the methods of elimination and solution are given in terms of this

relation. 132
Also, these papers extend the relation to propositions. In this

interpretation, Peirce reads x cy, "If a: is true, y is true," but he is well

aware of the difference between the meaning of x cy and usual significance

of "x implies y". He says:
133

"It is stated above that this means 'if is true, y is true'. But this

meaning is greatly modified by the circumstance that only the actual state

of things is referred to. ... Now the peculiarity of the hypothetical

proposition [ordinarily expressed by 'if a; is true, y is true'] is that it goes

out beyond the actual state of things and declares what would happen were

things other than they are or may be. The utility of this is that it puts

us in possession of a rule, say that
'

if A is true, B is true ', such that should

we afterward learn something of which we are now ignorant, namely that

A is true, then, by virtue of this rule, we shall find that we know something

else, namely, that B is true. [In contrast to this] . . . the proposition,

a c b, is true if a is false or if b is true, but is false if a is true while b is false.

. . . For example, we shall see that from -(x cy) [the negation of x cy]

we can infer zcx. This does not mean that because in the actual state of

things x is true and y false, therefore in every state of things either z is

false or x true ; but it does mean that in whatever state of things we find x

true and y false, in that state of things either z is false or x is true [since,

ex hypothesi, x is true anyway]."
132

Alg. Log. 1880, see esp. 2.

*Alg. Log. 1885, pp. 186-87.
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We now call this relation, x c y,
"
material implication,

" and the peculiar

theorems which are true of it are pretty well known. Peirce gives a number

of them. They will be intelligible if the reader remember that x c y means,

"The actual state of things is not one in which x is true and y false".

(1) xc(ycx). This is the familiar theorem: "A true proposition is

implied by any proposition".

(2) [(x cy) ex] ex. If "x implies y" implies that x is true, then x is

true.

(3) [(x c y) c a] c x, where a is used in such a sense that (x c y) c a

means that from x c y every proposition follows.

The difference between "material implication" and the more usual

meaning of "implies" is a difficult topic into which we need not go at this

time.134 But it is interesting to note that Peirce, who introduced the

relation, understood its limitations as some of his successors have not.

Other theorems in terms of this relation are :

(4) x ex.

(5) [xc(ycz)]c [yc(xcz)].

(6) xc[(xcy)cy].

(7) (xcy) c [(y cz) c(xcz)]. This is a fundamental law, since called

the "Principle of the Syllogism".

Peirce worked most extensively with the logic of relatives. His interest

here reflects a sense of the importance of relative terms in the analyses of

mathematics, and he anticipates to some extent the methods of such later

researches as those of Peano and of Principia Mathematica. To follow

his successive papers on this topic would probably result in complete con-

fusion for the reader. Instead, we shall make three divisions of this entire

subject as treated by Peirce: (1) the modification and extension of De

Morgan's calculus of relatives by the introduction of a more "mathe-

matical" symbolism for the most part contained in the early paper,

"Description of a Notation for the Logic of Relatives"; (2) the calculus

of relations, expressed without the use of exponents and in a form which

makes it an extension of the Boolean algebra a latef development which

may be seen at its best in "The Logic of Relatives", Note B in the Studies

in Logic by members of Johns Hopkins University; and (3) the systematic

consideration of the theory of relatives, which is scattered throughout the

papers, but has almost complete continuity.

134 But see below, Chap, iv, Sect, i, and Chap, v, Sect. v.
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The terms of the algebra of relatives may usually be regarded as simple

relative terms, such as "ancestor", "lover," etc. Since they are also class

names, they will obey all the laws of the logic of classes, which may be

taken for granted without further discussion. But relative terms have

additional properties which do not belong to non-relatives; and it is to

these that our attention must be given. If w signifies "woman" and *,

"servant," logic is concerned not only with such relations as s w, the

"logical product" "servant woman", s + w, the "logical sum" "either

servant or woman (or both)", and s cw, "the class 'servants' is contained

in the class 'women', relations which belong to class-terms in general

but also with the relations first symbolized by De Morgan, "servant of a

woman," "servant of every woman," and "servant of none but women".

We may represent "servant of a woman" by s\w.
m This is a kind of

"multiplication" relation. It is associative,

8\(1\W)
=

(S\1)\W

"Servant of a lover-of-a-woman
"

is
"
servant-of-a-lover of a woman".

Also, it is distributive with respect to the non-relative "addition" symbol-

ized by +
,

s = sm w

"Servant of either a man or a woman" is "servant of a man or servant of

a woman ". But it is not commutative : 8\lis not l\s,
"
servant of a lover

"

is not equivalent to "lover of a servant". To distinguish s w from s w,

or s x w the class of those who are both servants and women we shall

call s w the relative product of s and w.

For "servant of every woman" Peirce proposed sw, and for "servant

of none but women" *w. As we shall see, this notation is suggested by

certain mathematical analogies. We may represent individual members

of the class w as Wi, Wz ,
W3 , etc., and the class of all the Ws as W\ + W2

+ Wz + . . . . Remembering the interpretation of +
,
we may write

w = Wl + W2 + W 3 + . . .

and this means, "The class-term, w, denotes W\ or Wz or W3 or ...,"

that is, w denotes an unspecified member of the class of Ws. The servant

of a (some, any) woman is, then, s w.

s w = 8\(Wi+Wt +W>+ ...) = s Wi + s^z + s W3 + ...

"A woman" is either W\ or W2 or W3 , etc.; "servant of a woman" is either

136 Peirce's notation for this is s w; he uses s, w for the simple logical product.
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servant of Wi or servant of Wz or servant of W3 , etc. Similarly,
"
servant

of every woman" is servant of W\ and servant of W2 and servant of W3 ,

etc.
;
or remembering the interpretation of x

,

where, of course, s\ Wn represents the relative product, "s of Wn," and x

represents the non-relative logical product translated by "and". The

above can be more briefly symbolized, following the obvious mathematical

analogies,

w = VW
w = 2w (s W)

Unless w represent a null class, we shall have

or sw cs w

The class "servants of every woman" is contained in the class "servants

of a woman". This law has numerous consequences, some of which are:

(l\8)c(l\ 8 w}

A lover of a servant of all women is a lover of a servant of a woman.

J
w c (J|*)

A lover of every servant-of-all-women stands to every woman in the rela-

tion of lover-of-a-servant of hers (unless the class s w be null).

I
s I c I

s w

A lover of every servant-of-a-woman stands to a (some) woman in the

relation of lover-of-a-servant of hers.

From the general principle,
136

134 The proof of this theorem is as follows:

a = ab c ... +ab -c ... +a -b c ... + ...,

or a = a b c . . . + P, where P is the sum of the remaining terms.

Whence, if O represent any relation distributive with respect to +
,

mOa = mOa be ... +mOP
Similarly, mQb = mOa be... +mQQ

mQc = mOab c . . . +mQR
Etc., etc.

Now let o, b, c, etc., be respectively /(xi), /(%), /(a;3 ), etc., and multiply together all

the above equations. On the left side, we have
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we have also,

*wc*w, or *c*
A lover of a (some) servant-of-every-woman stands to every woman in the

relation of lover-of-a-servant of hers.

We have also the general formulae of inclusion,

If Ics, then l
w csw

and, If s c w, then l
w c I"

The first of these means: If all lovers are servants, then a lover of every

woman is also a servant of every woman. The second means : If all servants

are women, then a lover of every woman is also a lover of every servant.

These laws are, of course, general. We have also: 137

(l\8)\W
=

l\(8 W)

(/) = ;<!)

l*+w Is x lw

The last of these is read: A lover of every person who is either a servant

or a woman is a lover of every servant and a lover of every woman. An

interesting law which remainds us of Lambert's "Newtonian formula" is,

One who is either-lover-or-servant of every woman, is either lover of every

woman or, for some portion q of the class women, is lover of every woman

except members of q and servant of every member of q, or, finally, is servant

of every woman. Peirce also gives this law in a form which approximates

even more closely the binomial theorem. The corresponding law for the

product is simpler,

(lxs)
w = l

w xsw

which is

On the right side, we have

(mOabc . . .) + (mOP) + (mOQ) + (mOR) + . . ., or (mOa b c . . .) +K
where K is a sum of other terms.

But (mQa b c . . . ) is mO [/(zO x /(x2 ) x /(z3 ) . . . ], which is

mOnx /(z)

Hence [wOH /()]+ K = Ux [mOf(x)].

Hence mOn/(x) cUx [mOf(x)].

Peirce does not prove this theorem, but illustrates it briefly for logical multiplication (see

"Description of a Notation", p. 346).
137 <<

Description of a Notation, p. 334.
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One who is both-lover-and-servant of every woman, is both a lover of every

woman and a servant of every woman.

Peirce introduces a fourth term, and summarizes in a diagram the inclu-

sion relations obtained by extending the formulae already given.
138 The

number of such inclusions, for four relatives, is somewhat more than one

hundred eighty. He challenges the reader to accomplish the precise

formulation of these by means of ordinary language and formal logic.

An s of none but members of w, Peirce symbolizes by
sw. He calls this

operation "backward involution", and relatives of the type *w he refers to

as "infinitesimal relatives", on account of an extended and difficult mathe-

matical analogy which he presents.
139 The laws of this relation are analo-

gous to those of sw .

If s c w, then ls c lw

If all servants are women, then a lover of none but servants is lover of none

but women.

If I c s, then sw c lw

If all lovers are servants, then a servant of none but women is a lover of

none but women.

i(*w)
= ("*>w

The lovers of none but servants-of-none-but-women are the lovers-of-

servants of none but women.
l+ sw = lw x sw

Those who are either-lovers-or-servants of none but women are those who

are lovers of none but women and servants of none but women.
i

*(w x v)
= aw x 8v

The servants of none but those who are both women and violinists are

those who are servants of none but.women and servants of none but vi7
linists.

{l\a)w C (l")w

Whoever is lover-of-a-servant of none but women is a lover-of-every-

servant of none but women.

l\
sw c <*Pw

A lover of one who is servant to none but women is a lover-of-none-but-

servants to none but women.
ls w c l

(s\w)
138

Ibid., p. 347.
139

Ibid., pp. 348 jf.
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Whoever stands to a woman in the relation of lover-of-nothing-but-servants

of hers is a lover of nothing but servants of women.

The two kinds of involution are connected by the laws :

'(,) =
(',)

A lover of none but those who are servants of every woman is the same as

one who stands to every woman in the relation of a lover of none but

servants of hers.

is = -I
- 14

Lover of none but servants is non-lover of every non-servant. It appears

from this last that x and
x

y are connected through negation :

-(/) =
-l\s, Not a lover of every servant is non-lover of a servant.

-('$)
=

l\-s, Not a lover of none but servants is lover of a non-

servant.

l-s =
~(l\s)

= -Is
,
A lover of none but non-servants is one who is

not lover-of-a-servant, a non-lover of every servant.
~ ls = -(-l\-s)

= l~ s
, A non-lover of none but servants is one who is

not a non-lover-of-a-non-servant, a lover of every non-servant.

We have the further laws governing negatives :

141

-[(Zx*)] = -(*)+ -(*<)

-(+) = -(/) + -(/<)

In the early paper, "On the Description of a Notation for the Logic

of Relatives", negatives are treated in a curious fashion. A symbol is

used for "different from" and the negative of s is represented by tt
s
,
"differ-

ent from every s". Converses are barely mentioned in this study. In the

paper of 1880, converses and negatives appear in their usual notation,

"relative addition" is brought in to balance "relative multiplication", and

the two kinds of involution are retained. But in "The Logic of Relatives"

in the Johns Hopkins Studies in Logic, published in 1882, involution has

disappeared, converses and negatives and "relative addition" are retained.

This last represents the final form of Peirce's calculus of relatives. We
have here,

(1) Relative terms, a, 6, ... x, y, z.

(2) The negative of x, -x.

140 See ibid., p. 353. Not-x is here symbolized by (1 x).
"i

Alg. Log. 1880, p. 55.
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(3) The converse of x, ^x. If x is "lover", ^x is "beloved"; if KE is

"lover", z is "beloved".

(4) Non-relative addition, a + b, "either a or 6".

(5) Non-relative multiplication, a x6, or a b, "both a and b".

(6) Relative multiplication, a\b, "a of a b".

(7) Relative addition, a t b, "a of everything but 6's, a of every non-6 ".

(8) The relations = and c
, as before.

(9) The universal relation, 1, "consistent with," which pairs every

term with itself and with every other.

(10) The null-relation, 0, the negative of 1.

(11) The relation "identical with", I, which pairs every term with

itself.

(12) The relation "different from", N, which pairs any term with

every other term which is distinct.142

In terms of these, the fundamental laws of the calculus, in addition to

those which hold for class-terms in general, are as follows :

(1) w(a) = a

(2) -(.) = .(-a)

(3) (acfe) = (w&cwa)

(4) If acb, then (a x) c(b\x) and (x a) c(x\b).

(5) If a c b, then (a t x} c (b t x) and (x t a) c (x t 6).

(6) x (a
1 6)

=
(x a)\b

(7) x t (a 1 6)
=

(x t a) t b

(8) z|(at&)c(z a) t&

(9) (at 6) a; cot (6 a;)

(10) (a x) + (b\x)c(a + b)\x

(11) z|(at&)c(zta)(zt&)

(12) (a+b)xc(a x) + (b\x)

(13) (ataO(&tz)c(a|6) tz

(14) -(at 6) = -a
|

-6

(15) -(a 1 6)
= -at -6

(16) ^(a + 6)
= v/a + 6

(17) (a 6)
= a 6

(18) w(a 1 6)
= a t 6

(19) w( |6)
= a v&

For the relations 1, 0, 7, and AT, the following additional formulae are

given :

142 1 have altered Peirce's notation, as the reader may see by comparison.
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(20) Oca; (21) zcl

(22) x + Q = x (23) x-1 = x

(24) x + 1 = 1 (25) x-0 =

(26) x t 1 = 1 (27) x =

(28) 1 t x = 1 (29) x =

(30) x\ N = x (31) x\I = x

(32) N t x = x (33) I x = x

(34) x + -x = 1 (35) x -x =

(36) 7c[ztv(-aO] (37) [z | (-*)] c AT

This calculus is, as Peirce says, highly multiform, and no general prin-

ciples of solution and elimination can be laid down. 143 Not only the variety

of relations, but the lack of symmetry between relative multiplication and

relative addition, e. g., in (10)-(13) above, contributes to this multiformity.

But, as we now know, the chief value of any calculus of relatives is not in

any elimination or solution of the algebraic type, but in deductions to be

made directly from its formulae. Peirce's devices for solution are, there-

fore, of much less importance than is the theoretic foundation upon which

his calculus of relatives is built. It is this which has proved useful in later

research and has been made the basis of valuable additions to logistic

development.

This theory is practically unmodified throughout the papers dealing

with relatives, as a comparison of
"
Description of a Notation for the Logic

of Relatives" with "The Logic of Relatives" in the Johns Hopkins studies

and with the paper of 1884 will indicate.

"Individual" or "elementary" relatives are the pairs (or triads, etc.)

of individual things. If the objects in the universe of discourse be A, B, C:

etc., then the individual relatives will constitute the two-dimensional array,

A : A, A : B, A : C, A : D, ...

B : A, B : B, B : C, B : D, ...

C:A, C :B, C : C, C :D, ...

. . . Etc., etc.

It will be noted that any individual thing coupled with itself is an individual

relative but that in general A : B differs from B : A individual relatives

are ordered couples.

A general relative is conceived as an aggregate or logical sum of such

143 "Logic of Relatives" in Studies in Logic by members of Johns Hopkins University,.

p. 193.
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individual relatives. If b represent "benefactor", then

b = ZiZyPM/ : /),

where (&),-/ is a numerical coefficient whose value is 1 in case I is a bene-

factor of J, and otherwise 0, and where the sums are to be taken for all the

individuals in the universe. That is to say, b is the logical sum of all the

benefactor-benefitted pairs in the universe. This is the first formulation

of "definition in extension", now widely used in logistic, though seldom in

exactly this form. By this definition, b is the aggregate of all the individual

relatives in our two-dimensional array which do not drop out through having

the coefficient 0. It is some expression of the form,

b = (X: F)i+(Z: Y) 2 + (X : F),+ ...

If, now, we consider the logical meaning of +
,
we see that this may be read,

"b is either (X : F)i or (X : F) 2 or (X : 7) 3 or . . . ". To say that b repre-

sents the class of benefactor-benefitted couples is, then, inexact: b repre-

sents an unspecified individual relative, any one of this class. (That it

should represent "some" in a sense which denotes more than one at once

which the meaning of + in the general case admits is precluded by the

fact that any two distinct individual relatives are ipso facto mutually

exclusive.) A general relative, so defined, is what Mr. Russell calls a

"real variable". Peirce discusses the idea of such a variable in a most

illuminating fashion. 144

"Demonstration of the sort called mathematical is founded on suppo-

sition of particular cases. The geometrician draws a figure; the algebraist

assumes a letter to signify a certain quantity fulfilling the required condi-

tions. But while the mathematician supposes a particular case, his hypoth-

esis is yet perfectly general, because he considers no characters of the

individual case but those which must belong to every such case. The ad-

vantage of his procedure lies in the fact that the logical laws of individual

terms are simpler than those which relate to general terms, because indi-

viduals are either identical or mutually exclusive, and cannot intersect or

be subordinated to one another as classes can. . . .

"The old logics distinguish between individuum signatum and indi-

mduum vagum. 'Julius Caesar' is an example of the former; 'a certain

man', of the latter. The indimduum vagum, in the days when such con-

ceptions were exactly investigated, occasioned great difficulty from its

having a certain generality, being capable, apparently, of logical division.

"*
"Description of a Notation, pp. 342-44.
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If we include under indimduum vagum such a term as 'any individual

man', these difficulties appear in a strong light, for what is true of any

individual man is true of all men. Such a term is in one sense not an

individual term; for it represents every man. But it represents each man

as capable of being denoted by a term which is individual; and so, though

it is not itself an individual term, it stands for any one of a class of such

terms. . . . The letters which the mathematician uses (whether in algebra

or in geometry) are such individuals by second intention. . . . All the

formal logical laws relating to individuals will hold good of such individuals

by second intention, and at the same time a universal proposition may be

substituted for a proposition about such an individual, for nothing can be

predicated of such an individual which cannot be predicated of the whole

class."

The relative b, denoting ambiguously any one of the benefactor-bene-

fitted pairs in the universe, is such an individual by second intention.

It is defined by means of the "prepositional function", "/ benefits J",

as the logical sum of the (/ : J) couples for which "I benefits J" is true.

The compound relations of the calculus can be similarly defined.

If a = 2<2y(a)iy(7 : J), and b = 2i2y(6)<y(7 : J),

then a+ b = 2i2y[(a)i,- + (&)</](/ : J)

That is, if "agent" is the logical sum of all the (7 : J) couples for which

"7 is agent of J" is true, and "benefactor" is the sum of all the (7 : J)

couples for which "I benefits J" is true, then "either agent or benefactor"

is the logical sum of all the (7 : J) couples for which
"
Either 7 is agent of

J or 7 benefits J" is true. We might indicate the same facts more simply

by defining only the
"
propositional function", (a + 6)i,.

145

(a + &) t-y
=

(a) */ +(&).'/

The definition of a + b given above, follows immediately from this simpler

equation. The definitions of the other compound relations are similar:

(a x
&),-,

= (a)i/x(6) iy

or a x& = S<2y[(a)iy x (fe)y](/ : J)

"Both agent and benefactor" is the logical sum of the (7 : J) couples for

which "7 is agent of J and 7 is benefactor of J" is true.

(a
1 6),,

= 2{(o) tt x(6)w }

or a\b = 2i2y[2*{(a) x(6)w }](7 : J)

148 See "Logic of Relatives ", toe. dt.
t p. 188.
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"Agent of a benefactor" is the logical sum of all the (7 : J) couples such

that, for some H, "I is agent of H and H is benefactor of J" is true.

There are two difficulties in the comprehension of this last. The first

concerns the meaning of "agent of a benefactor". Peirce, like De Morgan,

treats his relatives as denoting ambiguously either the relation itself or

the things which have the relation either relations or relative terms.

a is either the relation "agent of" or the class name "agent". Now note

that the class name denotes the first term in the pairs which have the

relation. With this in mind, the compound relation, a\b, will become

clear. "Agent of a benefactor" names the 7's in the I : J pairs which

make up the field of the relation,
"
agent of a benefactor of ". Any reference

to the J's at the other end of the relation is gone, just as "agent" omits

any reference to the J's in the field of the relation "agent of". The second

difficulty concerns the operator, S&, which we have read, "For some H".

Consider any statement involving a "prepositional function", <pz, where z

is the variable representing the individual of which <p is asserted.

That is, 2 z <f>z symbolizes "Either <p is true of Zi or <p is true of Z2 or <p is

true of Z3 or ... ", and this is most simply expressed by "For some z (some

2 or other), <pz". In the particular case in hand, <pz is (a) ih x (b} h j, "I is

agent of H and H is benefactor of J". The terms, / and J, which stand in

the relation "7 is agent of a benefactor of J", are those for which there is

some H or other such that I is agent of H and H is benefactor of J.

Suppose we consider any "prepositional function", tpz with the oper-

ator n.

Hz (f>z
= ipZi x ifiZz x <pZs x ...

That is, n z <pz symbolizes
"

<p is true of Zi and <? is true of Z2 and <p is true

of Z 3 and . . . ", or
"

<p is true for every 2". This operator is needed in the

definition of a 1 6.

(at ft),-/
= HA {(a),-A +(6) *,-}

"7 is agent of everyone but benefactors of J" is equivalent to "For every H,

either 7 is agent of 7f or 7T is benefactor of J".

at& = ZiSnA a tt +6

"Agent of all non-benefactors" is the logical sum of all the (7 : J) couples

such that, for every H, either 7 is agent of H or H is benefactor of J. The

same considerations about the ambiguity of relatives denoting either the
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relation itself or those things which are first terms of the relation applies

in this case also. We need not, for the relations still to be discussed, con-

sider the step from the definition of the compound
"
prepositional func-

tions", (a t &),, in the above, to the definition of the corresponding relation,

a t b. This step is always taken in exactly the same way.

The converse, converse of the negative, and negative of the converse,

are very simply defined.

("&);/
=

(&)/<

[(-&)],/ = (-6),<

[-(<*)]./
=

-(&),*

That the negative of the converse is the converse of the negative follows

from the obvious fact that -(&)/ = (-&)/.

All the formulae of the calculus of relatives, beyond those which belong

also to the calculus of non-relative terms,
146 may be proved from such

definitions. For example:

To prove, (a + 6)
= ^a + ^b

v(a + b)ij
= (a + &),-,-

=
(a),-.-+ (&)/

But (a),-,-
= (va)a, and (&),

= O&)i,-

Hence (a + 6)t,-
= (^a)a+ (^b)a

Hence S t-S/{w(a + fe) ,-,-}(/ : J) = SiS/{(wa) t-,-
+ (6) ,-}(/ : /) Q.E.D.

For the complete development of this theory, there must be a discussion

of the laws which govern such expressions as (a),-/, or in general, expressions

of the form <px, where <px is a statement which involves a variable, x, and <px

is either true or false whenever any individual value of the variable is

specified. Such expressions are now called "prepositional functions".147

(a),-, or in the more convenient notation, <px, is a propositional function of

one variable; (a)*,-, or <f>(x, y}, may be regarded as a propositional function

of two variables, or as a function of the single variable, the individual rela-

tive (/ : </), or (X : Y).

This theory of propositional functions is stated in the paper of 1885,

'On the Algebra of Logic". It is assumed, as also in earlier papers, that

he laws of the algebra of classes hold for propositions as well.148 The

dditional law which propositions obey is stated here for the first time.

146 The formulae of the calculus of classes can also be derived from these, considered as

themselves laws of the calculus of propositions (see below, Chap, vi, Sec. iv).
147 Peirce has no name for such expressions, though he discusses their properties acutely

(see Alg. Log. 1880, 2).
148 This assumption first appears in Alg. Log. 1880.
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The current form of this law is "If x 41 0, then x = 1", which gives

immediately "If # =
1, then x = 0" "If x is not false, then x is true,

and if x is not true, then x is false". Peirce uses v and / for "true" and

"false", instead of 1 and 0, and the law is stated in the form

(x-f)(v-x} =

But the calculus of prepositional functions, though derived from the

algebra for propositions, is not identical with it. "a; is a man" is neither

true nor false. A propositional function may be true in some cases, false

in some cases.
"
If a; is a man, then # is a mortal

"
is true in all cases, or

true of any x; "a; is a man" is true in some cases, or true for some values

of x. For reasons already suggested,

1i x (px
=

<pXi + (f>Xz + <px 3 + . . .

2 x (px represents
"

<px is true for some value of the variable, x that is,

either <px\ is true or <?x 2 is true or <f>x s is true or . . .

"
Similarly,

Ux <f>X
=

(fXi X <pXz X <pX 3 X ...

nx <px represents
"

<px is true for all values of the variable, x that is,

<f>Xi is true and <px 2 is true and <px 3 is true and ..."

If (a) xy , or more conveniently, <p(x, y), represent "x is agent of y",

and (b) xy , or more conveniently, \f/(x, y), mean "x is benefactor of y", then

nx2 y[<p(x, y) x$(x, y)]

will mean that for all values of x and some values of y, "x is agent of y

and x is benefactor of y" is true that is, it represents the proposition

"Everyone is both agent and benefactor of someone". This will appear

if we expand nx2 y[(p(x, y) x\f/(x, y)]:

nx^ y[<p(x, y} x^(ar, y}}

I, 2/0 X<KZ I} yi)] + [<f>(xi, 2/2) *t(xi, 2/2)]+ ...}

/i) x t(x 2 , 2/1)] + [ <p(x<i, 2/2)
x t(xz, 2/2)] + . . .

}

x {[<f>(x 3 , yi) x^(z 3 , yi)] + [v(x 3 , 1/2) x^(z 3 , 2/2)] + ...}

x ... Etc., etc.

This expression reads directly
"
{Either [x t is agent of y\ and x\ is bene-

factor of 2/1] or [xi is agent of 2/2 and x\ is benefactor of 2/2] or . . .
}
and [either

[#2 is agent of 2/1 and x 2 is benefactor of 2/1] or [x2 is agent of 2/2 and z 2 is bene-

factor of 2/2] or . . .} and {either [x 3 is agent of 2/1 and x 3 is benefactor of

2/i] or [x s is agent of 2/2 and x s is benefactor of 2/2] or . . .
}
and . . . Etc., etc".
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The operator S, which is nearer the argument, or "Boolian" as Peirce calls

it, indicates the operation, +
, within the lines. The outside operator, II,

indicates the operation, x, between the lines i. e., in the columns; and

the subscript of the operator nearer the Boolian indicates the letter which

varies within the lines, the subscript of the outside operator, the letter

which varies from line to line. Three operators would give a three-dimen-

sional array. With a little patience, the reader may learn to interpret

any such expression directly from the meaning of simple logical sums and

logical products. For example, with the same meanings of v(x, y) and

will mean "Everyone (x) is agent of some (y) benefactor of himself".

(Note the order of the variables in the Boolian.) And

2 x2 vUz[<p(x, z) + iKz, y)]

will symbolize "There is some x and some y such that, for every z, either

x is agent of 2 or 2 is benefactor of y"', or, more simply, "There is some

pair, x and y, such that x is agent of all non-benefactors of y".

The laws for the manipulation of such Boolians with n and S operators

are given as follows :

149

"
1st. The different premises having been written with distinct indices

(the same index not being used in two propositions) are written together,

and all the H's and S's are to be brought to the left. This can evidently be

done, for

[Or in. the more convenient, and probably more familiar, notation,

H x <px *n y <py
= H xn y (<f>x x <py)

"2d. Without deranging the order of the indices of any one premise,

the n's and S's belonging to different premises may be moved relatively

to one another, and as far as possible the S's should be carried to the left

149
Alg. Log. 1885, pp. 196-98.
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of the n's. We have

ILiUjXa = UjUiXij [Or, U xU y <p(x, y}
= U yU x <p(x, y)]

WtXij = V&iXij [Or, -2 x -2 v <p(x, y}
= 2 y2 x <p(x, y)}

and also 2 t-n,-;r,-?//
= H^iXiyj [Or, Sny(^a;x^) = H. y2 x(<px x\I/y)]

But this formula does not hold when i and j are not separated. We do

have, however,

SiHiXij -< Tlj^iXij [Or, SJIy^fo y) c.H yV x <p(x, y)]

It will, therefore, be well to begin by putting the 2's to the left as far as

possible, because at a later stage of the work they can be carried to the

right but not [always] to the left. For example, if the operators of two

premises are IlfSjTIfc and 2^11^2^, we can unite them in either of the two

orders

and shall usually obtain different conclusions accordingly. There will

often be room for skill in choosing the most suitable arrangement.

. . . "5th. The next step consists in multiplying the whole Boolian

part, by the modification of itself produced by substituting for the index

of any II any other index standing to the left of it in the Quantifier. Thus,

for

SJI/Zi/ [Or, for 2 xTL v <p(x, y},

we can write 2tII,-Z,-,7t-i SJIy { <p(x, y} x <p(x, x)}]

"6th. The next step consists in the re-manipulation of the Boolian

part, consisting, 1st, in adding to any part any term we like; 2d, in dropping

from any part any factor we like, and 3d, in observing that

xx =
f, x + x =

v,

so that xxy + z = z (x + x + y}z
= z

"7th. n's and 2's in the Quantifier whose indices no longer appear in

the Boolian are dropped.

"The fifth step will, in practice, be combined with part of the sixth

and seventh. Thus, from 2tIIj7t-j
we shall at once proceed to 2^.-t if we like."

We may say, in general, that the procedures which are valid in this

calculus are those wrhich can be performed by treating 2 x <px as a sum,

<pxi + <pxz + <f>x3 + . . ., and U x <px as a product, <pxi x <pxz x <px3 x . . .
;

I, xn y \f/(x, y) as a sum, for the various values of x, of products, each for
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the various values of y, and so on. Thus this calculus may be derived from

the calculus of propositions. But Peirce does not carry out any proofs

of the principles of the system, and he notes that this method of proof

would be theoretically unsound. 150 "It is to be remarked that St t
- and

HiXi are only similar to a sum and a product; they are not strictly of that

nature, because the individuals of the universe may be innumerable."

Another way of saying the same thing would be this: The laws of the

calculus of propositions cannot extend to 2iXi and n t:r t-, because the extension

of these laws to aggregates in general, by the method which the mathemati-

cal analogies of sum and product suggest, would require the principle of

mathematical induction, which is not sufficient for proof in case the aggre-

gate is infinite.

The whole of the calculus of relatives may be derived from this calculus

of prepositional functions by the methods which have been exemplified

that is, by representing any relation, 6, as S<Sy(6)<,-(7 : J), and defining the

relations, such as "converse of", "relative-product," etc., which dis-

tinguish the calculus, as II and 2 functions of the elementary relatives.

We need not enter into the detail of this matter, since Sections II and III

of Chapter IV will develop the calculus of propositional functions by a

modification of Peirce's method, while Section IV of that chapter will show

how the calculus of classes can be derived from this calculus of propositional

functions, Section V will indicate the manner in which the calculus of rela-

tions may be similarly derived, and Section VI will suggest how, by a

further important modification of Peirce's method, a theoretically adequate

logic of mathematics may be obtained.

It remains to consider briefly Peirce's studies toward the derivation of

other mathematical relations, operations, and systems from symbolic logic.

The most important paper, in this connection, is "Upon the Logic of

Mathematics". 151 Certain portions of the paper, "On an Improvement in

Boole's Calculus of Logic", and of the monograph, "Description of a Nota-

tion for the Logic of Relatives", are also of interest.

The first-mentioned of these is concerned to show how the relations

+
, =, etc., of arithmetic can be defined in terms of the corresponding logi-

cal relations, and the properties of arithmetical relations deduced from

theorems concerning their logical analogues.
162

"Imagine ... a particular case under Boole's calculus, in which the

160
Alg. Log. 1885, p. 195.

161 Proc. Amer. Acad., vii, 402-12.
152 Loc. cit., pp. 410-11.
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letters are no longer terms of first intention, but terms of second intention,

and that of a special kind. . . . Let the letters . . . relate exclusively to

the extension of first intensions. Let the differences of the characters of

things and events be disregarded, and let the letters signify only the differ-

ences of classes as wider or narrower. In other words, the only logical

comprehension which the letters considered as terms will have is the greater

or less divisibility of the class. Thus, n in another case of Boole's calculus

might, for example, denote 'New England States'; but in the case now

supposed, all the characters which make these states what they are, being

neglected, it would signify only what essentially belongs to a class which

has the same relation to higher and lower classes which the class of New

England States has, that is, a collection of six.

"In this case, the sign of identity will receive a special meaning. For,

if m denotes what essentially belongs to a class of the rank of 'sides of a

cube', then [the logical] m = n will imply, not that every New England

State is the side of a cube, and conversely, but that whatever essentially

belongs to a class of the numerical rank of
' New England States

'

essentially

belongs to a class of the rank of
'

sides of a cube ', and conversely. Identity

of this particular sort may be termed equality. . . .

"

If a, b, c, etc. represent thus the number of the classes, a, b, c, etc.,

then the arithmetical relations can be defined as logical relations. The

logical relation a + 6, already defined, will represent arithmetical addition:

And from the fact that the logical + is commutative and associative, it

will follow that the arithmetical + is so also. Arithmetical multiplication

is more difficult to deal with but may be defined as follows :

153

a X b represents an event when a and b are events only if these events

are independent of each other, in which case a X b = a b [where a 6 is the

logical product]. By the events being independent is meant that it is

possible to take two series of terms, A\, Az, A s , etc., and B\, B2 ,
B3, etc.,

such that the following conditions are satisfied. (Here x denotes any

individual or class, not nothing; Am , A n> Bm , B n , any members of the

two series of terms, and 2 A, 2 B, S (A B) logical sums of some of the

A n's, the B n 's, and the (A n 5)'s respectively.)

Condition 1. No Am is A n

2. No Bm is B n

3. x = S (A B)

4. a = S A
163 Loc. tit., p. 403.
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Condition 5. b = 2 B

6. Some Am is B n

This definition is somewhat involved: the crux of the matter is that

a b will, in the case described, have as many members as there are combina-

tions of a member of a with a member of b. Where the members of a are

distinct (condition 1) and the members of b are distinct (condition 2), these

combinations will be of the same multitude as the arithmetical a X b.

It is worthy of remark that, in respect both to addition and to multi-

plication, Peirce has here hit upon the same fundamental ideas by means

of which arithmetical relations are defined in Principia Mathematical

The "second intention" of a class term is, in Principia, Nc'a; a + b, in

Peirce's discussion, corresponds to what is there called the "arithmetical

sum" of two logical classes, and a X & to what is called the "arithmetical

product". But Peirce's discussion does not meet all the difficulties that

could hardly be expected in a short paper. In particular, it does not

define the arithmetical sum in case the classes summed have members in

common, and it does not indicate the manner of defining the number of a

class, though it does suggest exactly the mode of attack adopted in Prin-

cipia, namely, that number be considered as a property of cardinally similar

classes taken in extension.

The method suggested for the derivation of the laws of various numerical

algebras from those of the logic of relatives is more comprehensive, though

here it is only the order of the systems which is derived from the order of

the logic of relatives; there is no attempt to define the number or multitude

of a class in terms of logical relations.155

We are here to take a closed system of elementary relatives, every

individual in which is either a T or a P and none is both.

Let c = (T : T)

8 = (P:P)

p = (P:T)

t = (T :P)

Suppose T here represent an individual teacher, and P an individual pupil:

the system will then be comparable to a school in which every person is

either teacher or pupil, and none is both and every teacher teaches every

pupil. The relative term, c, will then be defined as the relation of one

154 See Vol. n, Section A.
155 "

Description of a Notation, pp. 359 ff.
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teacher to another, that is, "colleague". Similarly, s is (P : P), the rela-

tion of one pupil to another, that is, "schoolmate". The relative term, p,

is (P : T), the relation of any pupil to any teacher, that is, "pupil". And

the relative term, t, is (T : P), the relation of any teacher to any pupil,

that is, "teacher". Thus from the two non-relative terms, T and P, are

generated the four elementary relatives, c, s, t, and p.

The properties of this system will be clearer if we venture upon certain

explanations of the properties of elementary relatives which Peirce does

not give and to the form of which he might object. For any such relative

(I : J), where the 7's and the /'s are distinct, we shall have three laws:

(1) (7 : J) J = I

Whatever has the (7 : J) relation to a J must be an 7: whoever has the

teacher-pupil relation to a pupil must be a teacher.

(2) (7 : J) 7 =

Whatever has the teacher-pupil relation to a teacher (where teachers and

pupils are distinct) does not exist.

(3) (7:J) (#:7<0 =
((I : J)\H] : K

The relation of those which have the (7 : J) relation to those which have

the (H : K) relation is the relation of those-which-have-the-(7 : J)-relation-

to-an-77 to a K.

It is this third law which is the source of the important properties of

the system. For example:

t\p
= (T :P)|(P : T) = [(T : P) |P] : T = (T : T) = c

The teachers of any person's pupils are that person's colleagues. (Our

illustration, to fit the system, requires that one may be his own colleague

or his own schoolmate.)

c c = (T : T) | (T : T) = [(T : T)
\
T] : T = (T : T) = c

The colleagues of one's colleagues are one's colleagues.

t\t
= (T :P)\(T : P) = [(T : P) T] : P =

(0 : P) =

There are no teachers of teachers in the system.

p s = (P : T) (P : P) = [(P : T) |P] : P =
(0 : P) =

There are no pupils of anyone's schoolmates in the system.

The results may be summarized in the following multiplication table,

in which the multipliers are in the column at the right and the multiplicands
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at the top (relative multiplication not being commutative) :

156

t p s

c t

c t

p s

p s

The symmetry of the table should be noted. The reader may easily in-

terpret the sixteen propositions which it gives.

To the algebra thus constituted may be added modifiers of the terms,

symbolized by small roman letters. If f is "French", f will be a modifier

of the system in case French teachers have only French pupils, and vice

versa. Such modifiers are "scalars" of the system, and any expression of

the form

a c + b t+ c p + d s

where c, t, p, and s are the relatives, as above, and a, b, c, d are scalars,

Peirce calls a "logical quaternion". The product of a scalar with a term

is commutative,

bt = tb

since this relation is that of the non-relative logical product. Inasmuch as

any (dyadic, triadic, etc.) relative is resolvable into a logical sum of (pairs,

triads, etc.) elementary relatives, it is plain that any general relative what-

ever is resolvable into a sum of logical quaternions.

If we consider a system of relatives, each of which is of the form

ai + bj + ck + dl+ ...

where i, j, k, I, etc. are each of the form

mu + nv + o w+ ...

where m, n, o, etc. are scalars, and u, v, w, etc. are elementary relatives,

we shall have a more complex algebra. By such processes of complication,

multiple algebras of various types can be generated. In fact, Peirce says:
157

"I can assert, upon reasonable inductive evidence, that all such [linear

associative] algebras can be interpreted on the principles of the present

notation in the same way as those given above. In other words, all such

algebras are complications and modifications of the algebra of (156) [for

which the multiplication table has been given]. It is very likely that this

Ibid., p. 361.
167

Ibid., pp. 363-64.
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is true of all algebras whatever. The algebra of (156), which is of such a

fundamental character in reference to pure algebra and our logical nota-

tion, has been shown by Professor [Benjamin] Peirce to be the algebra of

Hamilton's quaternions."

Peirce gives the form of the four fundamental factors of quaternions and

of scalars, tensors, vectors, etc., with their logical interpretations as relative

terms with modifiers such as were described above.

One more item of importance is Peirce's modification of Boole's calculus

of probabilities. This is set forth with extreme brevity in the paper,
" On

an Improvement in Boole's Calculus of Logic".
158 For the expression of

the relations involved, we shall need to distinguish the logical relation of

identity of two classes in extension from the relation of numerical equality.

We may, then, express the fact that the class a has the same membership

as the class b, or all a's are all 6's, by a = 6, and the fact that the number

of members of a is the same as the number of members of b, by a = b.

Also we must remember the distinction between the logical relations ex-

pressed by a + b, ab, a \-b, and the corresponding arithmetical relations

expressed by a + b, a X b, and a b. Peirce says:
169

"Let every expression for a class have a second meaning, which is its

meaning in a [numerical] equation. ^Namely, let it denote the proportion

of individuals of that class to be found among all the individuals examined

in the long run.

"Then we have

If a = b a = b

a-{-b = (a + b)-\-ab

"Let ba denote the frequency of the 6's among the a's. Then considered

as a class, if a and b are events ba denotes the fact that if a happens b happens.

a X ba = a b

"
It will be convenient to set down some obvious and fundamental proper-

ties of the function ba .

a X ba = 6 X ab

<p(ba , ca)
=

<p(b, c)a

(1
-

6).
= 1 - ba

ba = - + fcj-c (
1 - -

a V a

IM Proc. Amer. Acad., vn, 255 ff.

359
Ibid., pp. 255-56.
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1 - a
ab
= 1 -

7 X 0(i

).= Ml))."

The chief points of difference between this modified calculus of prob-

abilities and the original calculus of Boole are as follows:

(1) Where Boole puts p, q, etc. for the "probability of a, of b, etc.",

in passing from the logical to the arithmetical interpretation of his equa-

tions, Peirce simply changes the relations involved from logical relations to

the corresponding arithmetical relations, in accordance with the foregoing,

and lets the terms a, b, etc. stand for the frequency of the a's, b's, etc.

in the system under discussion.

(2) Boole has no symbol for the frequency of the a's amongst the 6's,

which Peirce represents by ab . As a result, Boole is led to treat the

probabilities of all unconditioned simple events as independent a pro-

cedure which involved him in many difficulties and some errors.

(3) Peirce has a complete set of four logical operations, and four

analogous operations of arithmetic. This greatly facilitates the passage

from the purely logical expression of relations of classes or events to the

arithmetical expression of their relative frequencies or probabilities.

Probably there is no one piece of work which would so immediately

reward an investigator in symbolic logic as would the development of this

calculus of probabilities in such shape as to make it simple and practicable.

Except for a monograph by Poretsky and the studies of H. MacColl,
160

the subject has lain almost untouched since Peirce wrote the above in 1867.

Peirce's contribution to our subject is the most considerable of any up
to his time, with the doubtful exception of Boole's. His papers, however,

are brief to the point of obscurity: results are given summarily with little

or no explanation and only infrequent demonstrations. As a consequence,

the most valuable of them make tremendously tough reading, and they

have never received one-tenth the attention which their importance de-

serves. 161 If Peirce had been given to the pleasantly discursive style of

De Morgan, or the detailed and clearly accurate manner of Schroder, his

work on symbolic logic would fill several volumes.

160 Since the above was written, a paper by Couturat, posthumously published, gives

an unusually clear presentation of the fundamental laws of probability in terms of symbolic

logic. See Bibl.
161 Any who find our report of Peirce's work unduly difficult or obscure are earnestly

requested to consult the original papers.
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VIII. DEVELOPMENTS SINCE PEIRCE

Contributions to symbolic logic which have been made since the time

of Peirce need be mentioned only briefly. These are all accessible and in a

form sufficiently close to current notation to be readily intelligible. Also,

they have not been superseded, as have most of the papers so far discussed
;

consequently they are worth studying quite apart from any relation to

later work. And finally, much of the content and method of the most

important of them is substantially the same with what will be set forth in

later chapters, or is such that its connection with what is there set forth

will be pointed out. But for the sake of continuity and perspective, a

summary account may be given of these recent developments.

We should first mention three important pieces of work contemporary

with Peirce's later treatises.
162

Robert Grassmann had included in his encyclopedic Wissenschaftslehre

a book entitled Die Begriffslehre oder Logik,
163

containing (1) Lehre von den

Begriffen, (2) Lehre von den Urtheilen, and (3) Lehre von den Schlussen.

The Begriffslehre is the second book of Die Formenlehre oder Mathematik,

and as this would indicate, the development of logic is entirely mathematical.

An important character of Grassmann's procedure is the derivation of the

laws of classes, or Begriffe, as he insists upon calling them, from the laws

governing individuals. For example, the laws a + a = a and a- a = a,

where a is a class, are derived from the laws e + e =
e, e-e =

e, e^e-i = 0,

where e, e\, e^ represent individuals. This method has much to commend

it, but it has one serious defect the supposition that a class can be treated

as an aggregate of individuals and the laws of such aggregates proved

generally by mathematical induction. As Peirce has observed, this method

breaks down when the number of individuals may be infinite. Another

difference between Grassmann and others is the use throughout of the

language of intension. But the method and the laws are those of extension,

and in the later treatise, there are diagrammatic illustrations in which

"concepts" are represented by areas. Although somewhat incomplete, in

162 Alexander MacFarlane, Principles of the Algebra of Logic, 1879, gives a masterly

presentation of the Boolean algebra. There are some notable extensions of Boole's methods

and one or two emendations, but in general it is the calculus of Boole unchanged. Mac-
Farlane's paper "On a Calculus of Relationship" (Proc. Roy. Soc. Edin., x, 224-32) re-

sembles somewhat, in its method, Peirce's treatment of "elementary relatives". But
the development of it seems never to have been continued.

163 There are two editions, 1872 and 1890. The later is much expanded, but the plan
and general character is the same.
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other respects Grassmann's calculus is not notably different from others

which follow the Boolean tradition.

Hugh MacColl's first two papers on "The Calculus of Equivalent

Statements",
164 and his first paper "On Symbolical Reasoning",

165
printed

in 1878-80, present a calculus of propositions which has essentially the

properties of Peirce's, without II and S operators. In others words, it is

a calculus of propositions, like the Two-Valued Algebra of Logic as we know

it today. And the date of these papers indicates that their content was

arrived at independently of Peirce's studies which deal with this tonic.

In fact, MacColl writes, in 1878, that he has not seen Boole. 166

The calculus set forth in MacColl's book, Symbolic Logic and its

Applications,
16

"

7
is of an entirely different character. Here the funda-

mental symbols represent prepositional functions rather than propositions;

and instead of the two traditional truth values, "true" and "false", we

have "true", "false", "certain", "impossible" and "variable" (not cer-

tain and not impossible). These are indicated by the exponents r, i, f,

17, 6 respectively. The result is a highly complex system, the fundamental

ideas and procedures of which suggest somewhat the system of Strict

Implication to be set forth in Chapter V.

The calculus of Mrs. Ladd-Franklin, set forth in the paper "On the

Algebra of Logic" in the Johns Hopkins studies,
168 differs from the other

systems based on Boole by the use of the copula v . Where a and b are

classes, a v6 represents "a is-partly 6", or "Some a is 6", and its negative,

a v b, represents
"
a is-wholly-not-6 ", or

" No a is b ". Thus a v b is equiva-

lent to a b 3= 0, and a v b to a b = 0. These two relations can, between

them, express any assertable relation in the algebra, a c b will be a v -b,

and a = b is represented by the pair, (a v-6)(-a v6). For propositions,

a v 6 denotes that a and b are consistent a does not imply that b is false

and b does not imply that a is false. And avb symbolizes "a and b are

inconsistent" if a is true, b is false; if b is true, a is false. The use of the

terms "consistent" and "inconsistent" in this connection is possibly mis-

leading: any two true propositions or any two false propositions are con-

1M
(1) Proc. London Math. Soc., ix, 9-20; (2) ibid., ix, 177-86.

168 Mind, v (1880), 45-60.
168 Proc. London Math. Soc., rx, 178.
147 Longmans, 1906.
168 The same volume contains an interesting and somewhat complicated system by

O. H. Mitchell. Peirce acknowledged this paper as having shown us how to express uni-

versal and particular propositions as II and S functions. B. I. Oilman's study of relative

number, also in that volume, belongs to the number of those papers which are important
in connecting symbolic logic with the theory of probabilities.
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sistent in this sense, and any two propositions one of which is true and

the other false are inconsistent. This is not quite the usual meaning of

"consistent" and "inconsistent" it is related to what is usually meant by

these terms exactly as the "material implication acb is related to what

is usually meant by "6 can be inferred from a".

That a given class, x, is empty, or a given proposition, x, is false, x =
0,

may be expressed by x v oo, where o is "everything" in most systems

represented by 1. That a class, y, has members, is symbolized by yv oo.

This last is of doubtful interpretation where y is a proposition, since Mrs.

Ladd-Franklin's system does not contain the assumption which is true

for propositions but not for classes, usually expressed, "If x =(= 0, then

x =
1, and if x 4= 1> then x = 0". x v oo may be abbreviated to x v,

a 6 v oo to a 6 v
,
and ?/ v <x> to y v

, c dv <x> to c dv , etc., since it is always

understood that if one term of a relation v or v is missing, the missing

term is o . This convention leads to a very pretty and convenient opera-

tion: v or v may be moved past its terms in either direction. Thus,

(a v6) = (ab v) =
( va 6)

and (%vy) = (xyv) =
( v x y)

But the forms ( v a b) and ( v x y) are never used, being redundant both

logically and psychologically.

Mrs. Ladd-Franklin's system symbolizes the relations of the traditional

logic particularly well :

All a is b. a v -b, or a -b v

No a is b. avb, or a 6 v

Some a is b. avb, or a b v

Some a is not b. a v -b, or a -6 v

Thus v characterizes a universal, v a particular proposition. And any

pair of contradictories will differ from one another simply by the difference

between v and v . The syllogism,
"
If all a is 6 and all b is c, then all

a is c,
"

will be represented by

(a v -b) (b v -c) v (a v c)

where v
,
or v

, within the parentheses is interpreted for classes, and v

between the parentheses takes the prepositional interpretation. This ex-

pression may also be read, "'All a is b and all b is c' is inconsistent with

the negative (contradictory) of 'Some a is not c'". It is equivalent to

(a v -b) (b v -c) (a v -c) v
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"The three propositions, 'All a is &', 'All b is c,
'

and 'Some a is not c',

are inconsistent they cannot all three be true". This expresses at once

three syllogisms:

(1) (a v -b) (b v -c) v (a v -c)

"If all a is b and all 6 is c, then all a is c";

(2) (a v -6) (a v -c) v (b v -c)

"
If all a is b and some a is not c, then some b is not c";

(3) (6 v -c) (a v -c) v (a v -6)

"
If all 6 is c and some a is not c, then some a is not b ".

Also, this method gives a perfectly general formula for the syllogism

(a v -b) (b v c) (a v c) v

where the order of the parentheses, and their position relative to the sign v

which stands outside the parentheses, may be altered at will. This single

rule covers all the .modes and figures of the syllogism, except the illicit

particular conclusion drawn from universal premises. We shall revert to

this matter in Chapter III. 169

The copulas v and v have several advantages over their equivalents,

= and =t= 0, or c and its negative: (1) v and v are symmetrical rela-

tions whose terms can always be interchanged; (2) the operation, mentioned

above, of moving v and v with respect to their terms, accomplishes trans-

formations which are less simply performed with other modes of expressing

the copula; (3) for various reasons, it is psychologically simpler and more

natural to think of logical relations in terms of v and v than in terms

of = and =|= 0. But v and v have one disadvantage as against =
, 4= >

and c
, they do not so readily suggest their mathematical analogues in

other algebras. For better or for worse, symbolic logicians have not

generally adopted v and v .

Of the major contributions since Peirce, the first is that of Ernst Schroder.

In his Operationskreis des Logikkalkuls (1877), Schroder pointed out that

the logical relations expressed in Boole's calculus by subtraction and divi-

sion were all otherwise expressible, as Peirce had already noted. The

meaning of + given by Boole is abandoned in favor of that which it now

has, first introduced by Jevons. And the "law of duality", which con-

nects theorems which involve the relation +
, or + and 1, with corresponding

theorems in terms of the logical product x, or x and 0, is emphasized.

See below, pp. 188 ff.
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(This parallelism of formulae had been noted by Peirce, in his first paper,

but not emphasized or made use of.)

The resulting system is the algebra of logic as we know it today. This

system is perfected and elaborated in Vorlesungen iiber die Algebra der

Logik (1890-95). Volume I of this work covers the algebra of classes;

Volume II the algebra of propositions; and Volume III is devoted to the

calculus of relations.

The algebra of classes, or as we shall call it, the Boole-Schroder algebra,

is the system developed in the next chapter.
170 We have somewhat elabo-

rated the theory of functions, but in all essential respects, we give the algebra

as it appears in Schroder. There are two differences of some importance

between Schroder's procedure and the one we have adopted. Schroder's

assumptions are in terms of the relation of subsumption, c
, instead of the

relations of logical product and =
, which appear in our postulates. And,

second, Schroder gives and discusses the various methods of his predecessors,

as well as those characteristically his own.

The calculus of propositions (Aussagenkalkul) is the extension of the

Boole-Schroder algebra to propositions by a method which differs little

from that adopted in Chapter IV, Section I, of this book.

The discussion of relations is based upon the work of Peirce. But

Peirce's methods are much more precisely formulated by Schroder, and

the scope of the calculus is much extended. We summarize the funda-

mental propositions which Schroder gives for the sake of comparison both

with Peirce and with the procedure we shall adopt in Sections II and III

of Chapter IV.

1) A, B, C, D, E ... symbolize "elements" or individuals. 171 These

are distinct from one another and from 0.

2) I
1 = A+B + C + D+ ...

I 1

symbolizes the universe of individuals or the universe of discourse of

the first order.

3) i, j, k, I, m, n, p, q represent any one of the elements A, B, C, D, ...

of I
1

.

4) I
1 = Zii

i

170 For an excellent summary by Schroder, see Abriss der Algebra der Logik ; ed. Dr.

Eugen M tiller, 1909-10. Parts i and n, covering Vols. i and n of Schroder's Vorlesungen,

have so far appeared.
171 The propositions here noted will be found in Vorlesungen uber die Algebra der Logik,

m, 3-42. Many others, and much discussion of theory, have been omitted.
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5) i : j represents any two elements, i and j, of I
1 in a determined order.

6) (i
=

;)
= (i:j =j : i), (i * j)

=
(i j 4= j i)

for every i and j.

7) i:j*0

Pairs of elements of I
1 may be arranged in a "block":

A : A, A : B, A : C, A : D, ...

B : A, B : B, B : C, B : D,
8)

C : A, C :B, C : C, C : D, ...

D : A, D : B, D : C, D : D, ...

These are the "individual binary relatives".

I
2 = (A:A) + (A:B) + (A:C) + ...

+ (B : A} + (B : B} + (B : C) + .

9)
+ (C : A) + (C : B) + (C : C) + . . .

+

I
2
represents the universe of binary relatives.

10) I
2 = 2,2, (i : j)

= 2<2y (i : j)
=

2,, (i : j)

9) and 10) may be summarized in a simpler notation:

1 = ?..{ : j = A : A + A : B + A : C + . . .

+ B :A + B :B + B :C+ .

11)
+ C :A + C :B + C :C+ ...

+

12) i :j : h will symbolize an "individual ternary relative".

13) I3 = 2*2/2, (i : j : h)
= 2^ i : j : h

Various types of ternary relatives are

14) A : A : A, B : A : A, A : B : A, A : A : B, A : B : C

It is obvious that we may similarly define individual relatives of the

fourth, fifth, ... or any thinkable order.
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The general form of a binary relative, a, is

a = Si/ a if (i : j)

where a t-/ is a coefficient whose value is 1 for those (i : j) pairs in which i has

the relation a to j, and is otherwise 0.

1 = Si/ i : j

= the null class of individual binary relatives.

(a 6) t-/
=

a,-/ &/ (a +
&),-/

=
a,- + 6 t-/

-a.-/
=

(-a),-/
=

-(a,/)

(a 1 6)i/
= 2^ aih bhi (a 1 &)/ = Uh (aih + &*/)

The general laws which govern prepositional functions, or Aussagen-

schemata, such* as (ab)a, SA aih bh j, n* (a^ + &&/), H a t-/, Sa a,-/, etc., are as

follows :

ylu symbolizes any statement about u; UUA U will have the value 1 in

case, and only in case, A u = 1 for every u; 2UAU will have the value 1 if

there is at least one u such that A u = 1. That is to say, IIM^4 M means
"A u for every u", and 2UA U means

"A u for some u".

a) nuA u cA v c 2UA U , -[?,UA U ]
c -A v c -fnu^4 u]

p) HUA U ^ AvLlujrL U i 2suAu ^ Ay T -* n..'\ u.

(The subscript u, in a and /3, represents any value of the variable u.}

T) -[nuA u]
= su -4U , -[s^ tt]

= nM -Au

5) If ^4W is independent of u, then IIU^4 U = A, and Su^l u = A.

e) nu(^ c5) = (A cnu5tt), n(Xu cfi) = (su^ tt c)

r?) S tt (^l M c5) = (nu^ u c5), 2M(^c5u)
= UcSM5u)

0) S ttfl , or SS,(-4uc5w )
= (n tt^ tt cS,Be)

u(^ u = i)
= (nM^ u = i), nu(A u = 0) = (su^M = 0)

1

U(A U = 0) = (nu^i u = 0), ?U(A U =
i)

= (s tt^u = i)

172 We write I where Schroder has 1'; N where he has 0'; (a | 6) for (a; 6); (a f &)

for (a j b); -a for a; ~a for a.

9
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\(nuA u cUuBu
-)}

K) Hu(A u cBu)c-\ ^
c SuU, c #)

(The reader should note that IIu (^4 u CjBu) is "formal implication", in

Principia Mathematica, (x).(px 3^#.)

X) A SU5U = Su A Bu ,
A + UUBU = Ilu(A + Bu)

y4 nuBu = nu A Bu , A + Su#u = 2U(A + #)

) (nu^ u)(n r5,,)
= nu

,
, A u B v

= uu A u Bu ,

2UA U + 2 VBV
= Zu ,,C4u + .BO = SC4 + 5)

o) s uiic^4 u ,
c lit, su A u , v

From these fundamental propositions, the whole theory of relations is

developed. Though Schroder carries this much further than Peirce, the

general outlines are those of Peirce's calculus. Perhaps the most inter-

esting of the new items of Schroder's treatment are the use of "matrices"

in the form of the two-dimensional array of individual binary relatives,

and the application of the calculus of relatives to Dedekind's theory of

"chains ", as contained in Was sind und was sollen die Zahlen.

Notable contributions to the Boole-Schroder algebra were made by
Anton Poretsky in his three papers, Sept lois fondamentales de la tkeorie

des egalites logiques (1899), Quelques lois ulterieures de la theorie des egalites

logiques (1901), and Theorie des non-egalites logiques (1904). (With his

earlier works, published in Russian, 1881-87, we are not familiar.) Poret-

sky's Law of Forms, Law of Consequences, and Law of Causes will be

given in Chapter II. As Couturat notes, Schroder had been influenced

overmuch by the analogies of the algebra of logic to other algebras, and

these papers by Poretsky outline an entirely different procedure which,

though based on the same fundamental principles, is somewhat more

"natural" to logic. Poretsky 's method is the perfection of that type of

procedure adopted by Jevons and characteristic of the use of the Venn

diagrams.

The work of Frege, though intrinsically important, has its historical

interest largely through its influence upon Mr. Bertrand Russell. Although

the Begriffsschrift (1879) and the Grundlagen der Arithmetik (1884) both
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precede Schroder's Vorlesungen, Frege is hardly more than mentioned

there; and his influence upon Peano and other contributors to the Formu-

laire is surprisingly small when one considers how closely their ta*sk is re-

lated to his. Frege is concerned explicitly with the logic of mathematics

but, in thorough German fashion, he pursues his analyses more and more

deeply until we have not only a development of arithmetic of unprecedented

rigor but a more or less complete treatise of the logico-metaphysical problems

concerning the nature of number, the objectivity of concepts, the relations

of concepts, symbols, and objects, and many other subtleties. In a sense,

his fundamental problem is the Kantian one of the nature of the judgments

involved in mathematical demonstration. Judgments are analytic, de-

pending solely upon logical principles and definitions, or they are synthetic.

His thesis, that mathematics can be developed wholly by analytic judg-

ments from premises which are purely logical, is likewise the thesis of

Russell's Principles of Mathematics. And Frege's Grundgesefee der Arith-

metik, like Principia Mathematica, undertakes to establish this thesis for

arithmetic by producing the required development.

Besides the precision of notation and analysis, Frege's work is important

as being the first in which the nature of rigorous demonstration is suf-

ficiently understood. His proofs proceed almost exclusively by substitu-

tion for variables of values of those variables, and the substitution of defined

equivalents. Frege's notation, it must be admitted is against him: it is

almost diagrammatic, occupying unnecessary space and carrying the eye

here and there in a way which militates against easy understanding. It is

probably this forbidding character of his medium, combined with the

unprecedented demands upon the reader's logical subtlety, which accounts

for th'e neglect which his writings so long suffered. But for this, the revival

of logistic proper might have taken place ten years earlier, and dated from

Frege's Grundlagen rather than Peano's Formulaire.

The publication, beginning in 1894, of Peano's Formulaire de Mathe-

matiques marks a new epoch in the history of symbolic logic. Heretofore,

the investigation had generally been carried on from an interest in exact

logic and its possibilities, until, as Schroder remarks, we had an elaborated

instrument and nothing for it to do. With Peano and his collaborators, the

situation is reversed: symbolic logic is investigated only as the instrument

of mathematical proof. As Peano puts it:
m

" The laws of logic contained in what follows have generally been found

173
Formulaire, i (1901), 9.
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by formulating, in the form of rules, the deductions which one comes upon

in mathematical demonstrations."

The immediate result of this altered point of view is a new logic, no

less elaborate than the old destined, in fact, to become much more elabo-

rate but with its elaboration determined not from abstract logical con-

siderations or by any mathematical prettiness, but solely by the criterion

of application. De Morgan had said that algebraists 'and geometers live

in "a higher realm of syllogism": it seems to have required the mathe-

matical intent to complete the rescue of logic from its traditional inanities.

The outstanding differences of the logic of Peano from that of Peirce

and Schroder are somewhat as follows :
m

(1) Careful enunciation of definitions and postulates, and of possible

alternative postulates, marking an increased emphasis upon rigorous

deductive procedure in the development of the system.

(2) The prominence of a new relation, e, the relation of a member of a

class to the class.

(3) The prominence of the idea of a prepositional function and of

"formal implication" and "formal equivalence", as against "material

implication" and "material equivalence".

(4) Recognition of the importance of "existence" and of the properties

of classes, members of classes, and so on, with reference to their "existence".

(5) The properties of relations in general are not studied, and "relative

addition" does not appear at all, but various special relations, prominent

in mathematics, are treated of.

The disappearance of the idea of relation in general is a real loss, not a

gain.

(6) The increasing use of substitution (for a variable of some value in

its range) as the operation which gives proof.

We here recognize those characteristics of symbolic logic which have

since been increasingly emphasized.

The publication of Principia Mathematica would seem to have deter-

mined the direction of further investigation to follow that general direction

indicated by the work of Frege and the Formulaire. The Principia is con-

cerned with the same topics and from the same point of view. But we see

here a recognition of difficulties not suggested in the Formulaire, a deeper

and more lengthy analysis of concepts and a corresponding complexity of

procedure. There is also more attention to the details of a rigorous

method of proof.

174 All these belong also to the Logica Mathematica of C. Burali Forti (Milan, 1894).
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The method by which the mathematical logic of Principia Mathematica

is developed will be discussed, so far as we can discuss it, in the concluding

section of Chapter IV. We shall be especially concerned to point out the

connection, sometimes lost sight of, between it and the older logic of Peirce

and Schroder. And the use of this logic as an instrument of mathematical

analysis will be a topic in the concluding chapter.



CHAPTER II

THE CLASSIC, OR BOOLE-SCHRODER, ALGEBRA OF LOGIC

I. GENERAL CHARACTER OF THE ALGEBRA. THE POSTULATES AND

THEIR INTERPRETATION

The algebra of logic, in its generally accepted form, is hardly old enough

to warrant the epithet "classic". It was founded by Boole and given its

present form by Schroder, who incorporated into it certain emendations

which Jevons had proposed and certain additions particularly the relation

"is contained in" or "implies" which Peirce had made to Boole's system.

It is due to Schroder's sound judgment that the result is still an algebra,

simpler yet more powerful than Boole's calculus. Jevons, in simplifying

Boole's system, destroyed its mathematical form; Peirce, retaining the

mathematical form, complicated instead of simplifying the original calculus.

Since the publication of Schroder's Vorlesungen iiber die Algebra der Logik

certain additions and improved methods have been offered, the most notable

of which are contained in the studies of Poretsky and in Whitehead's Uni-

versal Algebra.
1

But if the term "classic" is inappropriate at present, still we may
venture to use it by way of prophecy. As Whitehead has pointed out,

this system is a distinct species of the genus "algebra", differing from all

other algebras so far discovered by its non-numerical character. It is

certainly the simplest mathematical system with any wide range of useful

applications, and there are indications that it will serve as the parent stem

from which other calculuses of an important type will grow. Already sev-

eral such have appeared. The term "classic" will also serve to distinguish

the Boole-Schroder Algebra from various other calculuses of logic. Some

of these, like the system* of Mrs. Ladd-Franklin, differ through the use

of other relations than +
,

x
,
c

,'
and =

,
and are otherwise equivalent

1 For Poretsky 's studies, see Bibliography; also p. 114 above. See Whitehead's Uni-

versal Algebra, Bk. n. Whitehead introduced a theory of "discriminants" and a treatment

of existential propositions by means of umbral letters. This last, though most ingenious
and interesting, seems to me rather too complicated for use; and I have not made use of

"discriminants ", preferring to accomplish similar results by a somewhat extended study of

the coefficients in functions.

118
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that is to say, with a "dictionary" of equivalent expressions, any theorem

of these systems may be translated into a theorem of the Boole-Schroder

Algebra, and vice versa. Others are mathematically equivalent as far as

they go, but partial. And some, like the calculus of classes in Principia,

Mathematica, are logically but not mathematically equivalent. And,

finally, there are systems such as that of Mr. MacColl's Symbolic Logic

which are neither mathematically nor logically equivalent.

Postulates for the classic algebra have been given by Huntington,

by Schroder (in the Abriss], by Del Re, by Sheffer and by Bernstein.2 The

set here adopted represents a modification of Huntington's third set.d

It has been chosen not so much for economy of assumption as for
"
natural-

ness" and obviousness.

Postulated:

A class K of elements a, b, c, etc., and a relation x such that:

1 1 If a and b are elements in K, then a x b is an element in K, uniquely

determined by a and 6.

1 2 For any element a, a x a = a.

1 3 For any elements a and b, a x 6 = b x a.

1 4 For any elements a, b, and c, a x (b x c)
= (a x 6) x c.

1 5 There is a unique element, 0, in K such that a x = for every ele-

ment a.

1 ' 6 For every element a, there is an element, -a, such that

1-61 If x x-a = 0, then x xa = x,

and 1-62 If y x a = y and y x -a =
y, then y = 0.

The element 1 and the relations + and c do not appear in the above.

These may be defined as follows:

1-7 1 = -0 Def.

1-8 a + b = -(-ax -6) Def.

1-9 a c b is equivalent to a x6 = a Def.

It remains to be proved that -a is uniquely determined by a, from

which it will follow that 1 is unique and that a + b is uniquely determined

by a and b.

2 See Bibl.

3 See "Sets of Independent Postulates for the Algebra of Logic", Trans. Amer. Math.

Soc., v (1904), 288-309. Our set is got by replacing + in Huntington's set by x, and

replacing the second half of G, which involves 1, by its analogue with 0. Thus 1 can be

denned, and postulates E and H omitted. Postulate J is not strictly necessary.
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The sign of equality in the above has its usual mathematical meaning;

i. e., {
=

}
is a relation such that if x = y and $(x} is an unambiguous

function in the system, then <p(x) and <p(y) are equivalent expressions and

interchangeable. It follows from this that if \f/(x) is an ambiguous function

in the system, and x =
y, every determined value of $(x}, expressible in

terms of x, is similarly expressible in terms of y. Suppose, for example,

that -a, "negative of a", is an ambiguous function of a. Still we may write

-a to mean, not the function "negative of a" itself, but to mean some

(any) determined value of that function any one of the negatives of a

and if -a =
b, then <p(-u) and <p(b) will be equivalent and interchangeable.

This principle is important in the early theorems which involve negatives.

We shall develop the algebra as an abstract mathematical system : the

terms, a, b, c, etc., may be any entities which have the postulated properties,

and x
,
+

, and c may be any relations consistent with the postulates.

But for the reader's convenience, we give two possible applications: (1) to

the system of all, continuous and discontinuous, regions in a plane, the

null-region included, and (2) to the logic of classes. 4

(1)

For the first interpretation, a x b will denote the region common to a

and b (their overlapping portion or portions), and a + b will denote that

which is either a or b or both, a c b will represent the proposition, "Region

a is completely contained in region b (with or without remainder)". will

represent the null-region, contained in every region, and 1 the plane itself,

or the "sum" { }
of all the regions in the plane. For any region a, -a

will be the plane except a, all that is not-a. The postulates will then hold

as follows:

1-1 If a and b are regions in the plane, the region common to a and b,

ax 6, is in 'the plane. If a and b do not overlap, then ax6 is the null-

region, 0.

1 2 For any region a, the region common to a and a, a x a, is a itself.

1 3 The region common to a and 6 is the region common to b and a.

1 4 The region common to a and 6 x c is the region common to a x 6

and c is the region common to all three.

1-5 The region common to any region a and the null-region, 0, is 0.

1-6 For every region a, there is its negative, -a, the region outside or

4 Both of these interpretations are more fully discussed in the next chapter.
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not contained in a, and this region is such that

1-61 If -a and any region x have only the null-region in

common, then the region common to x and a is itself, or x is contained in a;

and 1-62 If the region common to y and a is y, or y is contained

in a, and the region common to y and -a is y, or y is contained in -a, then y

must be the null-region which is contained in every region.

That the definitions, 1-7, 1-8, and 1-9, hold, will be evident.

(2)

For the second interpretation, a, b, c, etc., will be logical classes, taken

in extension that is, a = b will mean that a and b are classes composed of

identically the same members, a x & will represent the class of those

things which are members of a and of b both; a + b, those things which

are either members of a or members of b or both, a c b will be the proposi-

tion that all members of a are also members of b, or that a is contained in b

(with or without remainder). is the null-class or class of no members;

and the convention is required that this class is contained in every class.

1 is the "universe of discourse" or the class which contains every entity

in the system. For any class a, -a represents the negative of a, or the class

of all things which are not members of a. The postulates will hold as fol-

lows:

1-1 If a and b are logical classes, taken in extension, the members com-

mon to a and b constitute a logical class. In case a and b have no members

in common, this class is the null-class, 0.

1-2 The members common to a and a constitute the class a itself.

1 3 The members common to a and b are the same as those common to

b and a.

1 4 The members common to a, b, and c, all three, are the same, whether

we first find the members common to b and c and then those common to a

and this class, or whether we first find the common members of a and b

and then those common to this class and c.

1 5 The members common to any class a and the null-class are none, or

the null-class.
*

1 6 For every class a, there is its negative, -a, constituted by all members

of the "universe of discourse" not contained in a, and such that:

1-61 If -a and any class x have no members in common,
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then all members of x are common to x and a, or x is contained in a;

and 1-62 If all members of any class y are common to y and a,

and common also to y and -a, then y must be null.

1-7 The "universe of discourse", "everything", is the negative of the

null-class, "nothing".

1-8 That which is either a or & or both is identical with the negative of

that which is both not-a and not-6.

1-9 That "a is contained in 6
"

is equivalent to "The class a is identical

with the common members of a and b ".

That the postulates are consistent is proved by these interpretations.

In the form given, they are not independent, but they may easily be made

so by certain alternations in the form of statement. 5

The following abbreviations and conventions will be used in the state-

ment and proof of theorems :

1. axfe will generally be abbreviated to a b or a -b, ax(6xc) to a (be},

ax-(fcx-c) to a-(6-c) or a--(6-c), etc.

2. In proofs, we shall sometimes mark a lemma which has been established

as (1), or (2), etc., and thereafter in that proof refer to the lemma by this

number. Also, we shall sometimes write "Q.E.D." instead of repeating

the theorem to be proved.

3. The principles (postulates, definitions, or previous theorems) by which

any step in proof is taken will usually be noted by a reference in square

brackets, thus: If x =
0, then [1-5] ax = 0. Reference to principles

whose use is more or less obvious will gradually be omitted as we proceed.

Theorems will be numbered decimally, for greater convenience in the

insertion of theorems without alteration of other numbers. The non-

decimal part of the number will indicate some major division of theorems,

as 1 indicates a postulate or definition. Theorems which have this digit

and the one immediately following the decimal point in common will be

different forms of the same principle or otherwise closely, related.

II. ELEMENTARY THEOREMS

2-1 If a =
b, then a c = b c and c a = c b.

This follows immediately from the meaning of = and 1-1.

2-2 a = b is equivalent to the pair, acb and b ca.

If a =
b, then [1 -2] a b = a and b a = b.

6 On this point, compare with Huntington's set.
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And if a b = a and b a =
b, then [1 -3] a = a b = b a = 6.

But [1-9] ab = a is equivalent to a c b and b a = b to b c a.

Equality is, then, a reciprocal inclusion relation.

2-3 aca.

a =
a, hence [2-2] Q.E.D.

Every element is "contained in" itself.

2-4 a -a = = -a a.

[1-2] a a a.

Hence [2-1, 1-4, 1 3] a -a = (a a) -a = a (a -a) = (a -a) a.

Also [1-2] -a -a = -a. Hence a -a = a (-a -a) = (a -a) -a.

But [1-62] if (a -a) a = (a -a) -a = a -a, then a -a = 0.

And [1-3] -a a = a -a. Hence also, -a a = 0.

Thus the product of any element into its negative is 0, and is the

modulus of the operation x .

2-5 a -b is equivalent to a b = a and to a c b.

If a b = a, then [1-4-5, 2-1-4] a -b = (a 6) -6 = a (b -b)

= a-0=0 (1)

And [1-61] if a -6 =
0, then a b = a (2)

By (1) and (2), a -b = and a b = a are equivalent.

And [1 9] a b = a is a c b.

We shall derive other equivalents of a c b later. The above is required

immediately. In this proof, we have written "1-4-5" and "2-1-4"

instead of "1-4, 1-5" and "2-1, 2-4". This kind of abbreviation in

references will be continued.

2-6 If acO, then a = 0.

If acO, then [1-9] a-0 = a. But [1-5] a-0 = 0.

2-7 If a c b, then a c c b c> and c a c c b.

If acb, then [1-9] a 6 = a and [2-1] (a6)c = ac (1)

But [1-2-3-4] (ab)c = (ba)c = b (ac) = (ac) b = [a (cc) &]
= [(ac) c] 6

= (ac)(c6) = (oc)(6c) (2)

Hence, by (1) and (2), if a c b, then (a c)(6 c)
= a c and [1 -9] a c c 6 c.

And [1-3] c a = a c and cb = b c. Hence also c a c c 6.

2-8 -(-a) = a.

[2-4] -(-a) -a = 0. Hence [2-5] -(-a) ca (1)

By (1), -[-(-a)] c-o. Hence [2-7] a --[-(-a)] ca-a.
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But [2-4] a -a = 0. Hence a --[-(-a)] cO.

Hence [2-6] a -[-(-a)] = and [2-5] a c-(-a) (2)

[2-2] (1) and (2) are equivalent to -(-a) = a.

3-1 a c b is equivalent to -b c -a.

[2-5] a c 6 is equivalent to a -6 = 0.

And [2-8] a -6 = -b a = -b -(-a).

And -6 -(-a) = is equivalent to -6 c -a.

The terms of any relation c may be transposed by negating both.

If region a is contained in region b, then the portion of the plane not in b

is contained in the portion of the plane not in a: if all a's are 6's, all non-6's

are non-a's. This theorem gives immediately, by 2-8, the two corollaries:

3-12 a c-6 is equivalent to b c-a; and

3-13 -a c 6 is equivalent to -b c a.

3-2 a = 6 is equivalent to -a = -b.

[2-2] a = b is equivalent to (a c6 and b ca).

[3 1] a c b is equivalent to -b c -a, and b c a to -a c -6.

Hence a = b is equivalent to (-a c-6 and -b c-a), which is equiva-

lent to -a = -b.

The negatives of equals are equals. By 2-8, we have also

3-22 a = -b is equivalent to -a = b.

Postulate 1-6 does not require that the function "negative of" be

unambiguous. There might be more than one element in the system having

the properties postulated of -a. Hence in the preceding theorems, -a

must be read "any negative of a ", -(-6) must be regarded as any one of

the negatives of any given negative of b, and so on. Thus what has been

proved of -a, etc., has been proved to hold for every element related to a

in the manner required by the postulate. But we can now demonstrate

that for every element a there is one and only one element having the

properties postulated of -a.

3-3 -a is uniquely determined by a.

By 1-6, there is at least one element -a for every element a.

Suppose there is more than one: let -a x and -
2 represent any two

such.

Then [2-8] -(-ai) = a = -(-a2). Hence [3-2] -aj = -o2 .

Since all functions in the algebra are expressible in terms of a, b, c, etc.,

the relation x
, the negative, and 0, while is unique and a x b is uniquely
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determined by a and b, it follows from 3 3 that all functions in the algebra

are unambiguously determined when the elements involved are specified.

(This would not be true if the inverse operations of "subtraction" and

"division" were admitted.)

3-33 The element 1 is unique.

[1-5] is unique, hence [3-3] -0 is unique, and [1-7] 1 = -0.

3-34 -1 = 0.

[1-7] 1 = -0. Hence [3-2] Q.E.D.

3 35 If a and b are elements in K, a + b is an element in K uniquely deter-

mined by a and b.

The theorem follows from 3.3, 1-1, and 1-8.

3-37 If a =
b, then a + c = b + c and c + a = c + b.

The theorem follows from 3 35 and the meaning of =
.

3-4 -(a + 6)
= -a-b.

[1-8] a + b = -(-a-b).

Hence [3-3, 2-8] -(a + b)
= -[-(-a-b)} = -a-b.

3-41 -(a b)
= -a + -b.

[1-8, 2-8] -a + -b = -[-(-a) -(-b)] = -(ab).

3-4 and 3-41 together state De Morgan's Theorem: The negative of a

sum is the product of the negatives of the summands; and the negative of a

product is the sum of the negatives of its factors. The definition 1-8 is a

form of this theorem. Still other forms follow at once from 34 and 3-41,

by 2- 8:

3-42 -(-a + -b) = ab.

3-43 -(a + -b) = -ab.

3.44 -(-a + b)
= a-b.

3-45 -(a-b) = -a + b.

3-46 -(-ab) = a + -b.

From De Morgan's Theorem, together with the principle, 3-2, "The

negatives of equals are equals", the definition 1-7, 1 = -0, and theorem

3-34, -1 = 0, it follows that for every theorem in terms of x there is a

corresponding theorem in terms of + . If in any theorem, each element be

replaced by its negative, and x and + be interchanged, the result is a

valid theorem. The negative terms can, of course, be replaced by positive,
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since we can suppose x = -a, y = -b, etc. Thus for every valid theorem

in the system there is another got by interchanging the negatives and 1

and the symbols x and + . This principle is called the Law of Duality.

This law is to be illustrated immediately by deriving from the postulates

their correlates in terms of + . The correlate of 1 1 is 3 35, already proved.

4-2 a + a = a.

[l'2]-a-a = -a. Hence [1-8, 3-2, 2-8] a + a = -(-a-a) =

-(-a) = a.

4-3 a + 6 = 6 + a.

[1-3] -a -b = -b -a. Hence [3-2] -(-a -6) = -(-b -a).

Hence [1-8] Q.E.D.

4-4 a + (b + c)
= (a + 6) + c.

[1-4] -a(-fe-c) = (-a-fc)-c.

Hence [3-2] -[-a (-b -c)]
= -[(-a -6) -c].

But [3-46, 1-8] -[-a(-fc-c)] = a + -(-b-c) = a+(6 + c).

And [3-45, 1-8] -[(-a-fc)-c] = -(-a-6) + c = (a + 6)+c.

4-5 a+1 = 1.

[1-5] -a-0 = 0. Hence [3-2] -(-a-0) = -0.

Hence [3-46] a + -0 = -0, and [1-7] a+1 = 1.

4-61 If -x + a =
1, then x a = x.

If -x + a =
1, then [3-2-34-44] x -a = -(-z + a) =-1=0.

And [2 5] x -a = is equivalent to x a = x.

4 612 If -x + a =
1, then z + a = a.

[4-61] If -a + a; = 1, then ax = a, and [3-2] -a + -x = -a (1)

By (1) and 2-8, if -x + a =
1, x + a = a.

4-62 If y + a = y and y + -a =
y, then 2/

= 1.

If T/
+ a =

y, [3-2] -?/ -a = -(y + a)
= -y.

And if y + -a =
y, -y a = -(y + -a) =

~y.

But [1-62] if -y a = -y and -# -a =
-y, -y = and i/

= -0 = 1.

4-8 a + -a = 1 = -a + a. (Correlate of 2-4)

[2-4] -a a = 0. Hence [3-2] a + -a = -(-a a) =-0 = 1.

Thus the modulus of the operation + is 1.

4-9 -a + b =
1, a + b =

b, a -b = 0, a b =
a, and a c 6 are all equivalent.

[2 5] a -b =
0, a b =

a, and a c 6 are equivalent.

[3-2] -a + b = 1 is equivalent to a -6 = -(-a + 6) =-1=0.
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[4-612] If -a + b = 1, a + b = b.

And if a + b =
b, [3 37] -a + b = -a + (a + 6)

= (-a + a) + b = 1+6
= 1.

Hence a + b = b is equivalent to -a + b = 1.

We turn next to further principles which concern the relation c .

5-1 If a c b and 6 cc, then ace.

[1-9] a c b is equivalent to a b = a, and b c c to 6 c = b.

If a b = a and 6 c =
b, a c = (a b) c = a (b c)

= a b = a.

But ac = a is equivalent to ace.

This law of the transitivity of the relation c is called the Principle of

the Syllogism. It is usually included in any set of postulates for the algebra

which are expressed in terms of the relation c .

5-2 a b ca and a b cb.

(a b) a = a (a 6)
= (a a) b = a b.

But (a 6) a a b is equivalent to ab ca.

Similarly, (a b) b = a (b b)
= ab, and ab cb.

5-21 a ca + b and b ca + b.

[5 2] -a -b c -a and -a -b c -6.

Hence [3 12] a c -(-a -6) and be -(-a -6).

But -(-a -6) = (a + b).

Note that 5-2 and 5-21 are correlates by the Law of Duality. In

general, having now deduced the fundamental properties of both x and +
,

we shall give further theorems in such pairs.

A corollary of 5-21 is:

5-22 a b ca + b.

[5-1-2- 21]

5-3 If a c 6 and c c d, then ac cb d.

[1-9] If acb and c c d, then a b = a and c d = c.

Hence (a c) (b d)
= (a b) (c d) = a c, and ac cb d.

5-31 If a c b and c c d, then a + c c b + d.

If acb and c c d, [3-1] -be -a and -d c -c.

Hence [5-3] -b-dc-a-c, and [3-1] -(-a-c) c-(-b-d).

Hence [1-8] Q.E.D.

By the laws, a a = a and a + a = a, 5-3 and 5-31 give the corollaries:

5-32 If a c c and b c c, then ab cc.



128 A Survey of Symbolic Logic

5-33 If a c c and b c c, then a + b c c.

5-34 If a c 6 and ace, then a c 6 c.

5-35 If a c 6 and ace, then a c 6 + c.

5-37 If acb, then a + cc6 + c. (Correlate of 2-7)

[2-3] ccc. Hence [5-31] Q.E.D.

5-4 a + ab = a.

[5-21] aca + ab (1)

[2-3] a ca, and [5-2] a b ca. Hence [5-33] a + a 6 ca (2)

[2-2] If (1) and (2), then Q.E.D.

5-41 a (a + 6)
= a.

[5-4] -a + -a-6 = -a. Hence [3-2] -(-a + -a-&) = -(-a) = a.

But [3-4] -(-a + --&) = a--(-a-&) = a (a + 6).

5-4 and 5-41 are the two forms of the Law of Absorption. We have

next to prove the Distributive Law, which requires several lemmas.

5*5 a (6 + c)
= ab + ac.

Lemma I: a b + ac ca (b + c).

[5-2] ab ca and ac ca. Hence [5 33] a b + a c c a (1)

[5-2] ab cb and ac cc. But [5-21] b cb + c and c cb + c.

Hence [5-1] a b cb + c and a c cb + c.

Hence [5 33] a b + a c c b + c (2)

[5-34] If (1) and (2), then a b + a c ca (b + c).

Lemma 2 : If p c q is false, then there is an element x, =}= 0, such that

x c p and x c -q.

p-q is such an element, for [5-2] p-qcp and p-qc-q; and

[4-9] if p -q =
0, then p c q, hence if p c q is false, then p -q =}= 0.

(This lemma is introduced in order to simplify the proof of Lemma 3.)

Lemma 3 : a (b + c) cb + ac.

Suppose this false. Then, by lemma 2, there is an element x,

4= 0, such that

xca(b + c) (1)

and x c -(b + ac)

But [?-12] if x c-(b + a c), then b + acc-x (2)

[5-1] If (1), then since [5-2] a (b + ac) ca, x ca (3)

and also, since a(b + ac) cb + c, x cb + c (4)

[5 1] If (2), then since [5 21] b c b + a c, b c -x and [3 12] x c -b (5)

Also [5 1] if (2), then since [5 21] a c c b + a c, a c c -x and [3 12]

x c -(a c) (6)
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From (6) and (3), it follows that x cc must be false; for if x cc

and (3) x c a, then [5 34] x c a c. But if x c a c and (6) x c -(a c),

then [1-62] x =
0, which contradicts the hypothesis x ={= 0.

But if x c c be false, then by lemma 2, there is an element y, + 0,

such that

ycx (7)

and 2/c-c, or [3-121 cc-?/ (8)

. [5 1] If (7) and (5), then y c -b and [3 12] b c -y (9)

If (8) and (9), then [5,- 33] b + c c -y and [3 -12]yc -(b + c) (10)

If (7) and (4), then [5>l]ycb + c (11)

[1-9] If (11), then y (b + c)
=

y, and if (10), y--(b + c)
= y (12)

But if (12), then [1-62] y =
0, which contradicts the condition,

*>o.
Hence the supposition that a(b + c) c b + a c be false is a false

supposition, and the lemma is established.

Lemma 4: a (b + c) ca b + a c.

By lemma 3, a (6 + c) c b + a c.

Hence [2-7] a [a (b + c)] c a (b + a c) .

But a [a (6 + c)]
= (a a)(6 + c)

= a (b + c).

And a (b + a c)
= a (a c + 6). Hence a (6 + c) c a (a c + 6).

But by lemma 3, a (a c + 6) c a c + a b.

And ac + ab = ab + ac. Hence a (b + c) c a b + a c.

Proof of the theorem : [2-2] Lemma 1 and lemma 4 are together equiva-

lent to a (b + c)
= a b + a c.

This method of proving the Distributive Law is taken from Huntington,

"Sets of Independent Postulates for the Algebra of Logic ". The proof of

the long and difficult lemma 3 is due to Peirce, who worked it out for his

paper of 1880 but mislaid the sheets, and it was printed for the first time in

Huntington's paper.
6

5-51 (a + b)(c + d)
= (a c + b c) + (a d + b d).

[5 5] (a + 6) (c + d)
= (a + 6) c + (a + 6) d =

(a c + b c) + (a d + b d) .

5-52 a + bc = (a + 6)(a + c). (Correlate of 5 5)

[5-51] (a + 6) (a + c)
=

(a a + b a) + (a c + b c)

=
[(a + a 6) + a c] + &*e.

But [5-4] (a + a 6) + a c = a + a c = a. Hence Q.E.D.

Further theorems which are often useful in working the algebra and

which follow readily from the preceding are as follows:

6 See "Sets of Independent Postulates, etc.", loc. c,it., p. 300, footnote.

10
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5-6 a-1 = a = 1-a.

[1-5] a-0 = 0. Hence a--l = 0.

But [1-61] if a--l = 0, then a-1 = a.

5-61 acl.

[1-9] Since a-1 = a, acl.

5-62 a + = a = + a.

-a--0 = -a-1 = -a. Hence [3-2] a + = -(-a--0) = -(-a) = a.

5-63 Oca.

0-a = a-0 = 0. Hence [1-9] Q.E.D.

5-64 1 ca is equivalent to a = 1.

[2 2] a = 1 is equivalent to the pair, acl and lea.

But [5-61] acl holds always. Hence Q.E.D.

5-65 a c is equivalent to a = 0.

[2 2] a = is equivalent to the pair, a c and Oca.

But [5-63] c a holds always. Hence Q.E.D.

5-7 If a + 6 = a: and a =
0, then b = x.

If a = 0, a + 6 = + 6 = 6.

5-71 If a b = x and a =
1, then b = re.

If a =
1, a 6 = 1-6 = 6.

5-72 a + b = is equivalent to the two equations, a = and 6 = 0.

If a = and 6 = 0, then a + 6 = + = 0.

And if a + 6 = 0, -a -6 = -(a + 6)
= -0 = 1.

But if -a -6 =
1, a = a-1 = a(-a -6) =

(a -a) -6 = 0--6 = 0.

And [5-7] if a + 6 = and a =
0, then 6 = 0.

5-73 a 6 = 1 is equivalent to the two equations, a = 1 and 6 = 1.

If a = 1 and 6 =
1, then a 6 = 1-1 = 1.

And if a 6 =
1, -a + -6 = -(a 6) =-1=0. Hence [5-72] -a =

and -6 = 0.

But [3-2] if -a =
0, a =

1, and if -6 = 0, 6 = 1.

5-7 and 5-72 are important theorems of the algebra. 5-7, "Any null

term of a sum may be dropped", would hold in almost any system; but

5-72, "If a sum is null, each of its summands is null", is a special law

characteristic of this algebra. It is due to the fact that the system con-

tains no inverses with respect to + and 0. a and -a are inverses with
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respect to x and and with respect to + and 1. 5-71 and 5-73, the

correlates of 5-7 and 5-72, are less useful.

5-8 a (b + -b) = a b + a -b = a.

[5-5] a (b + -6) = a b + a -b.

And [4-8] 6 + -b = 1. Hence a (b + -b) = a- 1 = a.

5-85 a + b = a + -ab.

[5-8] b = ab + -ab.

Hence a + b = a + (a b + -a b) = (a + a 6) + a -6.

But [5-4] a + ab = a. Hence Q.E.D.

It will be convenient to have certain principles, already proved for two

terms or three, in the more general form which they can be given by the

use of mathematical induction. Where the method of such extension is

obvious, proof will be omitted or indicated only. Since both x and +

are associative, we can dispense with parentheses by the definitions:

5-901 a + b + c=(a + b)+c Def.

5-902 abc = (ab)c Def.

5-91 a = a (b + -b)(c + -c)(d + -d~) . . .

[5-8]

5-92 1 = (a + -a)(6 + -6)(c + -c)...

[4-8]

5-93 a = a + ab + ac + ad+...

[5-4]

5-931 a = a (a + &)( + c)(a + d). . .

[5-41]

5-94 a(b + c + d+...)=ab + ac + ad+...

[5-5]

5-941 a + bcd,.. = (a + 6)(a + c)(a + d). . .

[5-52]

5-95 -(a + b + c + . . . )
= -a -b -c . . .

If the theorem hold for n terms, so that

-(oi + a2 + . . . + an)
= -i -a2 . . . -an

then it will hold for n -\- 1 terms, for by 3 4,

-[(ai + a2 + . . . + on) + aB+1 ]
= -(ai + a2 + . . . + an) --an-i-i

And [3-4] the theorem holds for two terms. Hence it holds for any

number of terms.
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5 951 -(a bed...) = -a + -b + -c + -d + . . .

Similar proof, using 3-41.

5-96 1 = a + b + c + . . . + -a -b -c . . .

[4-8, 5-951]

5-97 a + 6 + c+...=Ois equivalent to the set, a =
0, b = 0, c = 0, . . .

[5-72]

5-971 abed... = 1 is equivalent to the set, a =
1, b =

1, c = 1, . . .

[5-73]

5-98 a -bed... = ab-ac-ad...

[1-2] a a a a . . .
= a.

5-981 a+(b + c + d+...~) = (a + 6) + (a + c) + (a + d) + . . .

[4-2] a + a + a+ . . .
= a.

The extension of De Morgan's Theorem by 5-95 and 5-951 is especially

important. 5-91, 5-92, and 5-93 are different forms of the principle by
which any function may be expanded into a sum and any elements not

originally involved in the function introduced into it. Thus any expression

whatever may be regarded as a function of any given elements, even though

they do not appear in the expression,- a peculiarity of the algebra. 5 92,

the expression of the universe of discourse in any desired terms, or expansion

of 1, is the basis of many important procedures.

The theorems 5-91-5-981 are valid only if the number of elements

involved be finite, since proof depends upon the principle of mathematical

induction.

III. GENERAL PROPERTIES OF FUNCTIONS

We may use f(x), $(x, y), etc., to denote any expression which involves

only members of the class K and the relations x and + . The further

requirement that the expression represented by f(x) should involve x or

its negative, -x, that $(x, y) should involve x or -x and y or -y, is unnecessary,

for if x and -x do not appear in a given expression, there is an equivalent

expression in which they do appear. By 5-91,

a = a (x + -.r)
= a x + a -x = (ax + a -x) (y + -y)

= axy + ax-y + a-xy + a-x -y, etc.

a x + a -x may be called the expansion, or development, of a with reference

to x. And any or all terms of a function may be expanded with reference

to x, the result expanded with reference to y, and so on for any elements

and any number of elements. Hence any expression involving only ele-
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ments in K and the relations x and + may be treated as a function of

any elements whatever.

If we speak of any a such that x = a as the
"
value of x ", then a value

of x being given, the value of any function of x is determined, in this algebra

as in any other. But functions of x in this system are of two types: (1)

those whose value remains constant, however the value of x may vary, and

(2) those such that any value of the function being assigned, the value of x

is thereby determined, within limits or completely. Any function which

is symmetrical with respect to x and -x will belong to the first of these

classes; in general, a function which is not completely symmetrical with

respect to x and -x will belong to the second. But it must be remembered,

in this connection, that a symmetrical function may not look symmetrical

unless it be completely expanded with reference to each of the elements

involved. For example,

a + -a b + -b

is symmetrical with respect to a and -a and with respect to b and -b. Ex-

panding the first and last terms, we have

a (b + -6) + -a b + (a + -a) -b = a b + a -b + -a b + -a -b = 1

whatever the value of a or of b. Any function in which an element, x,

does not appear, but into which it is introduced by expanding, will be

symmetrical with respect to x and -x.

The decision wrhat elements a given expression shall be considered a

function of is, in this algebra, quite arbitrary except so far as it is deter-

mined by the form of result desired. The distinction between coefficients

and "variables" or "unknowns" is not fundamental. In fact, we shall

frequently find it convenient to treat a given expression first as a function-

say of x and y, then as a function of z, or of x alone. In general, coef-

ficients will be designated by capital letters.

The Normal Form of a Function. Any function of one variable, f(x),

can be given the form

A x + B -x

where A and B are independent of x. This is the normal form of functions

of one variable.

6-1 Any function of one variable, f(x}, is such that, for some A and some B
which are independent of x,

f(x} = A x + B -x
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Any expression which involves only elements in the class K and

the relations x and + will consist either of a single term a single

element, or elements related by x or of a sum of such terms. Only

four kinds of such terms are possible: (1) those which involve x,

(2) those which involve -x, (3) those which involve both, and (4)

those which involve neither. 7

Since the Distributive Law, 5-5, allows us to collect the coefficients

of x, of -x and of (x -a-), the most general form of such an expres-

sion is

p x + q -x + r (x -x) + s

where p, q, r, and s are independent of x and -x.

But [2-4] r(x-x] = r-0 = 0.

And [5-9] s = s x + s -x.

Hence p x + q-x + r (x -x) + s =
(p + s) x + (q + s} -x.

Therefore, A = p + s, B q + s, gives the required reduction.

The normal form of a function of n -\- 1 variables,

l, X Z , ... Xn , Xn+l

may be defined as the expansion by the Distributive Law of

f(Xi, Xz, ... )&+! +/ '(Xi, a-2 ,
... Xn) OTn+l

where / and /
'

are each some function of the n variables, x\, x2 ,
... xn , and

in the normal form. This is a "step by step" definition; the normal form

of a function of two variables is defined in terms of the normal form of

functions of one variable; the normal form of a function of three variables

in terms of the normal form for two, and so on. 8 Thus the normal form

of a function of two variables, $>(x, y), will be found by expanding

(A x + B -x) y+(Cx + D -x) -y

It will be, Axy + B-xy + Cx-y + D-x-y

The normal form of a function of three variables, ^?(x, y, z), will be

A x y z + B -x y z + C x-y z + D -x -y z + E xy -z + F -x y -z

+ G x -y -z + H -x -y -z

And so on. Any function in the normal form will be fully developed with

7 By a term which "involves" x is meant a term which either is x or has x "as a

factor". But "factor" seems inappropriate in an algebra in which h x is always contained

in x, h x ex.
8 This definition alters somewhat the usual order of terms in the normal form of func-

tions. But it enables us to apply mathematical induction and thus prove theorems of a

generality not otherwise to be attained.
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reference to each of the variables involved that is, each variable, or its

negative, will appear in every term.

6-11 Any function may be given the normal form.

(a) By 6-1, any function of one variable may be given the

normal form.

(6) If functions of n variables can be given the normal form,

then functions of n + 1 variables can be given the normal form, for,

Let $(xi, x 2 , ... xn ,
xn+i) be any function of n + 1 variables.

By definition, its normal form will be equivalent to

f(Xi, XZ , ... Xn) 'Xn+i +/ '(Xi, Xz, ... Z) Xn+l

wLere / and /
'
are functions of Xi, x2 , ... xn and in the normal

form.

By the definition of a function, 3>(xi, x z , ... xn ,
xn+i) may be re-

garded as a function of xn+\. Hence, by 6-1, for some A and some

B which are independent of xn^ i

$(&i, Xz, ... Xn , Xn+l) = A Xn+l + B -Xn+l

Also, by the definition of a function, for some / and some /
'

A =
f(xi, Xz, ... xn)

and B = f '(x l} x2 , ... xn)

Hence, for some/ and/
' which are independent of xn+i

i, Xz, ... Xn ,
Xn+i)

=

Therefore, if the functions of n variables, / and / ', can be given the

normal form, then $(x 1} x z , . . . xn , xn+i ) can be given the normal form.

(c) Since functions of one variable can be given the normal form,

and since if functions of n variables can be given the normal form,

functions of n + 1 variables can be given the normal form, therefore

functions of any number of variables can be given the normal form.

The second step, (6), in the above proof may seem arbitrary. That it

is valid, is due to the nature of functions in this algebra.

6- 12 For a function of n variables, $(xi, x2 ,
... .rn), the normal form will

be a sum of 2" terms, representing all the combinations of Xi, positive or

negative, with x 2 , positive or negative, with . . . with xn , positive or

negative, each term having its coefficient.
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(a) A normal form function of one variable has two terms, and

by definition of the normal form of functions of n + 1 variables, if

functions of k variables have 2 k
terms, a function of k + 1 variables

will have 2* + 2 k
, or 2 h+}

, terms.

(6) A normal form function of one variable has the further

character described in the theorem; and if normal form functions

of k variables have this character, then functions of A' -f- 1 variables

will have it, since, by definition, the normal form of a function of

k + 1 variables will consist of the combinations of the (k + l)st

variable, positive or negative, with each of the combinations repre-

sented in functions of k variables.

Since any coefficient may be 0, the normal form of a function may con-

tain terms which are null. Where no coefficient for a term appears, the

coefficient is, of course, 1. The order of terms in the normal form of a

function will vary as the order of the variables in the argument of the

function is varied. For example, the normal form of <b(x, y) is, by defini-

tion,

Axy + B-xy+Cx-y + D-x-y

and the normal form of ^(y, x) is

Pyx + Q-yx + Ry-x + S-y-x

Except for the coefficients, these differ only in the order of the terms and

order of the elements in the terms. And since + and x are both associa-

tive and commutative, such a difference is not material.

6-15 Any two functions of the same variables can differ materially only

in the coefficients of the terms.

The theorem follows immediately from 6-12.

In consequence of 6-15, we can, without loss of generality, assume

that, for any two normal form functions of the same variables w-ith which

we may be concerned, the order of terms and the order of variables in the

arguments of the functions is the same. And also, in any function of

n + T variables, $(#1, x2 , ... x n ,
xn+ i), which is equated to

2 , ... xn -xn+i + i, x 2 , ... xn --xn+ i

xn+ i may be any chosen one of the n + 1 variables. The convention that

it is always the last is consistent with complete generality of the proofs.

6-17 The product of any two terms of a function in the normal form is

null.
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By 6-12, for any two terms of a function in the normal form,

there will be some variable, xn , such that xn is positive in one of

them and negative in the other; since otherwise the two terms

would represent the same combination of x\, positive or negative,

with xz, positive or negative, etc. Consequently, the product of

any two terms will involye a factor of the form xn -xn , and will

therefore be null.

Unless otherwise specified, it will be presumed hereafter that any func-

tion mentioned is in the normal form.

The Coefficients in a Function. The coefficients in any function can be

expressed in terms of the function itself.

6-21 If/(x) = Ax + B-x, then /(I)
= A.

For /(I)
= A-1 + B--1 = A + B-Q = A.

6-22 If .f(x)
= Ax + B-x, then /(O)

= B.

For/(0) = A-Q + B--Q = + 5-1 = B.

6-23 f(x)
=

/(!) a; +/(<))-*.

The theorem follows immediately from 6-1, 6-21 and 6-22.

These laws, first stated by Boole, are very useful in reducing compli-

cated expressions to normal form. For example, if

V(x) = a c (d x + -d -x) + (c + x] d

reduction by any other method would be tedious. But we have

^(1) = a c (d-l + -d-Q) + (c + 1) d = ac d + c d + d = d

and SF(0)
= ac (d-Q + -d- 1) + (c + 0) d = ac -d + c d

Hence the normal form of ^(x) is given by

^f(x)
= dx + (ac-d + c d) -x

Laws analogous to 6-23, also stated by Boole, may be given for functions

of more than one variable. For example,

f(x,y) =/(!, l)-*y+/(0, 1) -x y+f(l, 0)-*-y+/(0, 0) -x -y

and $(x, y, z)
=

$>(!, 1, 1) -x y z + $(0, 1, 1) --x y z + <I>(1, 0, 1) -x -y z

+ $(0, 0, 1) x -yz + $(1, 1, 0) -x y -z + $(0, 1, 0)xy-z
+ $(1, 0, 0) -x -y -z + $(0, 0, 0) x -y -z

We can prove that this method of determining the coefficients extends to

functions of any number of variables.
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.Ti .To .T3 . . . Xn \
6-24 If G r be any term of (i, # 2 ,

z 3 , ... xn), then

r will be the coefficient, C.
U, U, U, . . . U J

(a) By 6 23, the theorem holds for functions of one variable.

(6) If the theorem hold for functions of k variables, it will hold

for functions of k + 1 variables, for,

By 6-11, any function of k + 1 variables, &(xi, x 2 , ... xk ,
xk+i),

is such that, for some / and some / ',

"t:::!} .
<"

i, i, ... 1,1 , fi, i, ... il ,Ji, i, ... il
And

*o,o,...o, }
=/ io ) o,...o}-

+/
io) o,...or

1

o,o,...o

Therefore, if every term of / be of the form

1, 1, ... 1 1 f .TI xz ... xk
f'

1 0, 0, ... J I -T! -xz . . . -xk

then every term of $ in which a^+i is positive will be of the form

l, 1, ... ll f .T! Xz... xk

and the coefficient of any such term will be /
-j

r , which,
l_ u, u, ... u j

*>*->*-) 1

oo o
1

Vy \J
j

. , . W y

And similarly, if every term of /
'
be of the form

fi, i, ... 11 r x, xz... xk
\

J
I 0, 0, ... j l-x l -xz . . . -xk J

then every term of $ in which .T/t+i is negative will be of the form

, i, ... IT r x, xz... xk

f A
0, 0, ... J l-Xi -.T2 . . . -xk
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and the coefficient of any such term will be /
'

by(2) ' is

*{oo"'o'\_ \J, \J, . . . \J,

Hence every term of <l> will be of the form

1, 1, ... 1, 1 1 f Zi X 2 . . . Xk Xk+i

0, 0, ... 0, j i -Xi -x z . . . -xk -xk+ i

(c) Since the theorem holds for functions of one variable, and

since if it hold for functions of k variables, it will hold for functions

of k + 1 variables, therefore it holds for functions of any number of

variables.

For functions of one variable, further laws of the same type as 6-23

but less useful have been given by Peirce and Schroder.

If /(a?)
= Ax + B-x:

6-25 /(I) =f(A+B) = f(-A+-B).

6-26 /(O)
= f(A-B) =f(-A-B).

6-27 f(A) =A + B= /(-) = f(A-B) = f(A + -B)

6-28 /() = A-B =f(-A] =f(-A-B) =f(-A + B)
=

/(l)-/(0) =f(x]-f(-x).

The proofs of these involve no difficulties and may be omitted.

In theorems to be given later, it will be convenient to denote the coef-

ficients in functions of the form $(xi, x%, . . . xn} by A\, AI, AS, . . . Azn,

or by Ci, C2 ,
Cs ,

. . ., etc. This notation is perfectly definite, since the

order of terms in the normal form of a function is fixed. If the argument

of any function be (xi, x 2 ,
... xn), then any one of the variables, Xk, will

be positive in the term of which Cm is the coefficient in case

p-2
k~l < m ^

(p + l)^*-
1

where p = any even integer (including 0). Otherwise Xk will be negative

in the term. Thus it may be determined, for each of the variables in the

function, whether it is positive or negative in the term of which Cm is the

coefficient, and the term is thus completely specified. We make no use

of this law, except that it validates the proposed notation.

Occasionally it will be convenient to distinguish the coefficients of those

terms in a function in which some one of the variables, say Xk, is positive

from the coefficients of terms in which Xk is negative. We shall do this



140 A Survey of Symbolic Logic

by using different letters, as PI, P2 , PS, . . . , for coefficients of terms in

which Xk is positive, and Qi, Qz, Qa, ... for coefficients of terms in which Xk

is negative. This notation is perfectly definite, since the number of terms,

for a function of n variables, is always 2", the number of those in which Xk

is positive is always equal to the number of those in which it is negative,

and the distribution of the terms in which Xk is positive, or is negative, is

determined by the law given above.

The sum of the coefficients, AI + A z + A 3 + . . ., will frequently be indi-

cated by ^A or ^A h ',
the product, Ai-Az'A 3

-
. . . by H^4 or 11^.

h h

Since the number of coefficients involved will always be fixed by the func-

tion which is in question, it will be unnecessary to indicate numerically the

range of the operators ^ and IJ .

The Limits of a Function. The lower limit of any function is the prod-

uct of the coefficients in the function, and the upper limit is the sum of

the coefficients.

6-3 A BcAx + B-xcA + B.

Hence [1 -9] A B c A x + B -x.

And (A x + B -x)(A + B) = Ax + AB-x + ABx + B-x
= (AB + A)x + (AB + B) -x.

But [5-4] A B + A = A, and A B + B = B.

Hence (A x + B -x)(A + B) = Ax + B -x, and [1-9] A x + B -x

cA + B.

6-31 f(B) C/(.T) cf(A).

[6-3 and 6-26, 6-27]

6-32 If the coefficients in any function, F(XI, x2 , ... xn), be C if C2 ,
C3 ,

. . . ,

then

(a) By 6 3, the theorem holds for functions of one variable.

(6) Let &(xi, x 2 ,
... Xk, Xk+i) be any function of k + 1 variables.

By 6 1 1
, for some / and some / ',

<>(zi, a?2 ,
... Xk, afc+i)

= f(x lt x*, . . . x^-Xk+i

+/'0ri, x z ,
... Xk)'-xk+ i (1)

Since this last expression may be regarded as a function of jt+ i in

which the coefficients are the functions / and / ', [6 3]

z ,
. . . xk) x/ '(xi, xz , ... xk) c <i>(.ri, x z ,

. . . xk ,
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Let AI{$], A z {<&}, AS{$}, etc., be here the coefficients in <; Ai{f},

AZ{/}, A s {f}, etc., the coefficients in/; and A\{f'}, Az{f'}, A s {f'},

etc., the coefficients in / '.

If IU{/} c/and lUm c/', then [6-3]

and, by (1), IU{/} x TLA {/'} c *.

But since (1) holds, any coefficient in $ will be either a coefficient

in / or a coefficient in / ', and hence

Hence if the theorem hold for functions of k variables, so that

zi, 3 2 , ... %k) and

then ^{$} $(&!, ar2 ,
xk ,

xk+ i).

Similarly, since (1) holds, [6-23] $<=/+/'.

Hence if/c^>{/} and /' c ^A{f
f

}, then [5-31]

But since any coefficient in $ is either a coefficient in / or a coef-

ficientin/',

Hence $ c

Thus if the theorem hold for functions of k variables, it will

hold for functions of k + 1 variables.

(c) Since the theorem holds for functions of one variable, and

since if it hold for functions of k variables, it will hold for functions

of k + 1 variables, therefore it holds generally.

As we shall see, these theorems concerning the limits of functions are

the basis of the method by which eliminations are made.

Functions of Functions. Since all functions of the same variables may
be given the same normal form, the operations of the algebra may frequently

be performed simply by operating upon the coefficients.

6-4 If /Or)
= A x + B -x, then -[f(x}\

= -Ax + -B -x.

[3 -4] -(A x + B -x) = -(A x) -(B -x)

= (-A + -X)(-B + x) = -A-B + -AX + -B -x

- (-A -B + -4) x + (-A -B + -B} -x

But [5-4] -A -B + -A = -A and -A -B + -B = -B.

Hence -(A x + B -x) = -A x + -B -x.
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6-41 The negative of any function, in the normal form, is found by re-

placing each of the coefficients in the function by its negative.

(a) By 6-4, the theorem is true for functions of one variable.

(6) If the theorem hold for functions of k variables, then it will

hold for functions of k + 1 variables.

Let F(XI, Xz, ... xk ,
xk+ i) be any function of k + 1 variables.

Then by 6-11 and 3 2, for some / and some / ',

... xk ,

+ /'(&!, Xz, ... Xk)'-Xk+l ]

But f(xi, Xz, ... Xk)-Xk+i+f'(xi, Xz, ... Xk)--Xk+i may be regarded

as a function of

Hence, by 6-4,

~[f(Xi, X*, X^'Xk+i +/ '(Xi, Xz, ... Xk} '-

-[f'(Xi, Xz, ...

Hence if the theorem be true for functions of k variables, so that

the negative of / is found by replacing each of the coefficients in / by

its negative and the negative of /
'

is found by replacing each of the

coefficients in /
'

by its negative, then the negative of F will be

found by replacing each of the coefficients in F by its negative, for,

as has just been shown, any term of

z, ... xk ,

in which xk+i is positive is such that its coefficient is a coefficient in

and any term of

~[F(xi, x 2 , ... x

in which xk+i is negative is such that its coefficient is a coefficient in

(c) Since (a) and (6) hold, therefore the theorem holds generally.

Since a difference in the order of terms is not material, 6-41 holds not

only for functions in the normal form but for any function which is com-

pletely expanded so that every element involved appears, either positive

or negative, in each of the terms. It should be remembered that if any

term of an expanded function is missing, its coefficient is 0, and in the

negative of the function that term will appear with the coefficient 1.
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6-42 The sum of any two functions of the same variables, <b(xi, Xz, ... )

and ^f(xi, Xz, ...), is another function of these same variables,

F(XI, x2 , ... xn),

such that the coefficient of any term in F is the sum of the coefficients of

the corresponding terms in $ and SK

By 6-15, $(xi, Xz, ... Xn) and V(xi, x 2 , ... xn ) cannot differ

except in the coefficients of the terms.

Let AI, AZ, As, etc., be the coefficients in $; BI, BZ, B s , etc., the

coefficients of the corresponding terms in V. For any two such cor-

,. . Xi Xz . . . xn I Xi Xz . . . xn
responding terms, Ak 1 r and Bk H

{_ -Xl -Xz . . . -Xn J L ~Xi -Xz . . . ~Xn

Xz ... Xn
I

Xl Xz . . . X T(Bk

Xi Xz . X n j (_ Xi ~X;j . . . Xn

= ( A JM I Xl Xz Xn

L tl ~ic2 """*^n

And since addition is associative and commutative, the sum of the

two functions is equivalent to the sum of the sums of such corre-

sponding terms, pair by pair.

6-43 The product of two functions of the same variables, <f>(xi, xz ,
... xn)

and ty(xi, Xz, . . . xn}, is another function of these same variables,

F(Xi, Xz, . . . Xn},

such that the coefficient of any term in F is the product of the coeffi-

cients of the corresponding terms in $ and ty.

{/>

<"V -V /v rvt /yXi Xz . . . Xn I J Xi Xz . . . Xn I ,

r and Bk
~\

r be any two
Xi Xz . . . X'n J L Xi Xz . . . Xn J

corresponding terms in <J> and SK

Xz ... X n \ D f Xi Xz . . . Xn
X D I

Xi Xz ~Xn J L Xi Xz . Xn
r

Xi Xz xn

-Xi -Xz . . . ~Xn

By 6 15, $ and ty do not differ except in the coefficients, and by

6-17, whatever the coefficients in the normal form of a function, the

product of any two terms is null. Hence all the cross-products of

terms in $ and S^ will be null, and- the product of the functions will
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be equivalent to the sum of the products of their corresponding terms,

pair by pair.

Since in this algebra two functions in which the variables are not the

same may be so expanded as to become functions of the same variables,

these theorems concerning functions of functions are very useful.

IV. FUNDAMENTAL LAWS OF THE THEORY OF EQUATIONS

We have now to consider the methods by which any given element

may be eliminated from an equation, and the methods by which the value

of an "unknown" may be derived from a given equation or equations. The

most convenient form of equation for eliminations and solutions is the

equation with one member 0.

Equivalent Equations of Different Forms. If an equation be not in the

form in which one member is 0, it may be given that form by multiplying

each side into the negative of the other and adding these two products.

7-1 a = b is equivalent to a-b + -a 6 = 0.

[2-2] a = b is equivalent to the pair, a c b and b c a.

[4-9] a cb is equivalent to a -b = 0, and b c a to -a b 0.

And [5 72] a -b = and -a b = are together equivalent to a -b

+ -a b = 0.

The transformation of an equation with one member 1 is obvious:

7-12 a = 1 is equivalent to -a = 0.

[3-2]

By 6-41, any equation of the form f(xi, x2 , ... #) = 1 is reduced to the

form in which one member is simply by replacing each of the coefficients

in / by its negative.

Of especial interest is the transformation of equations in which both

members are functions of the same variables.

7-13 If &(xi, xz, ... xn) and ^f(xi, x z , ... xn) be any two functions of the

same variables, then

x-2 , . . . xn

is equivalent to F(XI, xz, ... xn)
= 0, where F is a function such that

if A i, AZ, A 3 , etc., be the coefficients in <, and BI, BZ, B 3 , etc., be the coef-

ficients of the corresponding terms in ^, then the coefficients of the corre-

sponding terms in F will be (Ai -Bi + -Ai J5i), (A 2 -B 2 + -A 2 BZ], (A S -B 3

+ -A 3B 3), etc.
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By 7- 1, $ = ^ is equivalent to (<i> x-) + (-<f> x ) =0.

By 6-41, -<J> and -^ are functions of the same variables as <i> and ^.

Hence, by 6-43, <J> x-ty and -< x ^ will each be functions of these

same variables, and by 6-42, ($ x-^) + (-$ x>J>) will also be a

function of these same variables.

Hence $, SF, -<, -^, $ x-SI>, -<l> x SI>, and ($ x-^) + (-< x ^) are all

functions of the same variables and, by 6-15, will not differ except

in the coefficients of the terms.

If Ak be any coefficient in <, and Bk the corresponding coefficient

in ^, then by 6-41, the corresponding coefficient in -$ will be -Ak

and the corresponding coefficient in -ty will be -Bk-

Hence, by 6-43, the corresponding coefficient in $x->3> will be

Ak -Bk, and the corresponding coefficient in -$ x ^ will be -A kBk .

Hence, by 6-42, the corresponding coefficient in ($ x-SI>) + (-$ x >J>)

will be Ak -Bk + -AkBk .

Thus (<
x -^) + (-< x ^) is the function F, as described above, and

the theorem holds.

By 7-1, for every equation in the algebra there is an equivalent equation

in the form in which one member is 0, and by 7 13 the reduction can usually

be made by inspection.

One of the most important additions to the general methods of the

algebra which has become current since the publication of Schroder's work

is Poretsky's Law of Forms. 9 By this law, given any equation, an equiva-

lent equation of which one member may be chosen at will can be derived.

7-15 a = is equivalent to t = a -t + -a t.

If a = 0, a-t + -at = Qt+l-t = t.

And if t = a-t + -at, then [7 1]

(a -t + -a t) -t + (a t + -a -t) I = = a-t + at = a

Since t may here be any function in the algebra, this proves that every

equation has an unlimited number of equivalents. The more general form

of the law is :

7-16 a = b is equivalent to t = (a b + -a -6) t + (a -b + -a b) -L

[7 1] a = b is equivalent to a -b + -a b = 0.

And [6 4] -(a -b + -a 6)
= ab + -a -b.

Hence [7 -15] Q.E.D.

The number of equations equivalent to a given equation and expressible

9 See Sept lois fondamentales de la theorie des egalites logiques, Chap. I.

11
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in terms of n elements will be half the number of distinct functions which

can be formed from n elements and their negatives, that is, 2~
n
/2.

The sixteen distinct functions expressible in terms of two elements,

a and b, are:

a, -a, b, -b, (i. e., a -a, b-b, etc.), 1 (i. e., a + -a, b + -b, etc.), ab,

a -b, -a b, -a -b, a + b, a + -b, -a + b, -a + -b, a b + -a -b, and a -b + -a b.

In terms of these, the eight equivalent forms of the equation a = b are:

a = b; -a = -b; = a -b + -a b; 1 = ab + -a -b; ab = a + b; a -b

= -ab; -a-b = -a + -b; and a + -b = -a + b.

Each of the sixteen functions here appears on one or the other side of an

equation, and none appears twice.

For any equation, there is such a set of equivalents in terms of the

elements which appear in the given equation. And every such set has

what may be called its "zero member" (in the above, = a-b + -ab)

and its "whole member" (in the above, 1 = ab + -a-b). If we observe

the form of 7-16, we shall note that the functions in the "zero member"

and "whole member" are the functions in terms of which the arbitrarily

chosen t is determined. Any t = the t which contains the function
{

= 0}

and is contained in the function
{
= 1

}
. The validity of the law depends

simply upon the fact that, for any t, ct c 1, i. e., t = l-t + Q--t. It is

rather surprising that a principle so simple can yield a law so powerful.

Solution of Equations in One Unknown. Every equation which is pos-

sible according to the laws of the system has a solution for each of the un-

knowns involved. This is a peculiarity of the algebra. We turn first to

equations in one unknown. Every equation in x, if it be possible in the

algebra, has a solution in terms of the relation c .

7-2 A x + B -x = is equivalent to B c x c -A.

[5-72] A x + B -x = is equivalent to the pair, A x = and

B -x = 0.

[4 9] B -x = is equivalent to B c x.

And A x = is equivalent to x -(-A) =
0, hence to x c-A.

7-21 A solution in the form // c x c K is indeterminate whenever the equa-

tion which gives the solution is symmetrical with respect to x and -x.

First, if the equation be of the form A x + A -x = 0.

The solution then is, A ex c-A.

But if A x + A -x 0, then A = A (x + -x) = A x + A -x = 0, and

-A = 1.
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Hence the solution is equivalent to Oczcl, which [5-61-63] is

satisfied by every value of x.

In general, any equation symmetrical with respect to x and -x

which gives the solution, H c x c K, will give also H c -x c K.

But if H c x and H c -x, then [4 9] H x = H and H -x = H.

Hence [1- 62] # = 0.

And if xcK and -xcK, then [5-33] x + -xcK, and [4-8, 5-63]

K = 1.

Hence H c x c K will be equivalent to c x c 1.

It follows directly from 7-21 that if neither x nor -x appear in an equa-

tion, then although they may be introduced by expansion of the functions

involved, the equation remains indeterminate with respect to x.

7 22 An equation of the form A x + B -x = determines x uniquely when-

ever A = -B, B = -A.

[3-22] A = -B and -A = B are equivalent; hence either of

these conditions is equivalent to both.

[7 21 A x + B -x = is equivalent to B c x c -A.

Hence if B = -A, it is equivalent to B ex cB and to -A ex c-A,

and hence [2-2] to x = B = -A.

In general, an equation of the form A x + B -x = determines x be-

tween the limits B and -A. Obviously, the solution is unique if, and only

if, these limits coincide; a,nd the solution is wholly indeterminate only

when they are respectively and 1, the limiting values of variables generally.

7-221 The condition that an equation of the form A x + B -x = be pos-

sible in the algebra, and hence that its solution be possible, is A B = 0.

By 6-3, ABcAx + B-x. Hence [5-65] if A x + B -x = 0, then

AB = 0.

Hence if A B + 0, then A x + B -x = must be false for all values

of x.

And A x + B -x = and the solution B ex c -A are equivalent.

A B = is called the "equation of condition" of A x + B -x = 0: it is

a necessary, not a sufficient condition. To call it the condition that A x

+ B -x = have a solution seems inappropriate : the solution B ex c -A

is equivalent to A x + B -x = 0, whether A x + B -x = be true, false, or

impossible. The sense in which A B = conditions other forms of the

solution of A x + B -x = will be made clear in what follows.

The equation of condition is frequently useful in simplifying the solution.
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(In this connection, it should be borne in mind that A B = follows from

A x + B -x =
0.) For example, if

a b x + (a + 6) -x =

then (a + 6) car c-(a &). But the equation of condition is

a b (a + 6)
= a b = 0, or, -(a 6)

= 1

Hence the second half of the solution is indeterminate, and the complete

solution may be written

a + b ex

However, this simplified form of the solution is equivalent to the original

equation only on the assumption that the equation of condition is satisfied

and a b = 0.

Again suppose ax + b -x + c =

Expanding c with reference to x, and collecting coefficients, we have

(a + c) x + (b + c) -x =

and the equation of condition is

(a + c) (6 + c)
= ab + a c + b c + c = ab + c =

The solution is b + c c x c -a -c

But, by 5-72, the equation of condition gives c = 0, and hence -c 1.

Hence the complete solution may be written

b ex c -a

But here again, the solution b ex c-a is equivalent to the original equation

only on the assumption, contained in the equation of condition, that c = 0.

This example may also serve to illustrate the fact that in any equation

one member of which is 0, any terms which do not involve x or -x may be

dropped without affecting the solution for x. If a x + b -x + c = 0, then

by 5-72, a x + b -x = 0, and any addition to the solution by retaining c will

be indeterminat^. All terms which involve neither the unknown nor its

negative belong to the "symmetrical constituent" of the equation to be

explained shortly.

Poretsky's Law of Forms gives immediately a determination of x which

is equivalent to the given equation, whether that equation involve x or not.

7-23 A x + B -x = is equivalent to x = -A x + B -x.

[7 15] A x + B -x = is equivalent to

x = (A x + B -x~) -x + (-A x + -B -x) x = B -x + -A x
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This form of solution is also the one given by the method of Jevons.10

Although it is mathematically objectionable that the expression which

gives the value of x should involve x and -x, this is in reality a useful and

logically simple form of the solution. It follows from 7-2 and 7-23 that

x -A x + B -x is equivalent to B c x c -A .

Many writers on the subject have preferred the form of solution in

which the value of the unknown is given in terms of the coefficients and an

undetermined (arbitrary) parameter. This is the most "mathematical"

form.

7-24 If A B =
0, as the equation A x + B -x =

requires, then A x

+ B -x = is satisfied by x = B -u + -A u, or x = B + u -A, where u is

arbitrary. And this solution is complete because, for any x such that

A x + B -x = there is some value of u such that x = B -u + -A u = B
+ u-A.

(a) By 6 4, if x = B -u + -A u, then -x = -B -u + A u.

Hence if x = B -u + -A u, then

A x + B -x = A (B -u + -B u} + B (-B -u + Au)
= AB-u + ABu = AB

Hence if A B = and x = B -u + -A u, then whatever the value

of u, A x + B -x = 0.

(6) Suppose x known and such that A x + B -x = 0.

Then if x = B -u + -A u, we have, by 7 1,

(B -u + -A u) -x + (-B -u + A u) x

= (A x + -A -x} u+ (B -x + -B x) -u =

The condition that this equation hold for some value of u is, by 7 221,

(AX + -A -x}(B -X+-BX) = A-BX+-AB-X = o

This condition is satisfied if A x + B -x = 0, for then

A (B + -B) x + (A + -A} B -x = A B + A - x + -A B -x =

and by 5 -72, A -B x + -A B -x = 0.

(c) If A B = 0, then B -u + -A u = B + u -A, for:

If A B = 0, then A B u = 0.

Hence B -u + -A u = B -u + -A (B + -B) u + A B u

= B -u + (A + -A) B u + -A-B u = B (-u + u) + -A -B u

= B + -A-BU.

But [5-85] B + -A -B u = B + u -A.

10 See above, p. 77.
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Only the simpler form of this solution, x = B + u -A, will be used hereafter.

The above solution can also be verified by substituting the value given

for x in the original equation. We then have

A (B -u + -A u} + B (-B -u + A u) = A B -u + A B u = A B

And if A B = 0, the solution is verified for every value of u.

That the solution, x = B -u + -A u = B + u -A, means the same as

Bc.xc.-A, will be clear if we reflect that the significance of the arbitrary

parameter, u, is to determine the limits of the expression.

If u =
0, B -u + -A u = B + u -A = B.

If u =
1, B-u + -Au = -A and B + u-A = B + -A. But when

AB =
0, B + -A = -A B + -A = -A.

Hence x B -u + -A u = B + u -A simply expresses the fact, otherwise

stated by B ex c-A, that the limits of x are B and -A.

The equation of condition and the solution for equations of the form

C x + D -x =
1, and of the form A x + B -x = C x + D -x, follow readily

from the above.

7 25 The equation of condition that C x + D -x = 1 is C + D =
1, and the

solution of C x + D -x = 1 is -D c x c C.

(a) By 6-3, Cx + D -x c C + D.

Hence if there be any value of x for which Cx + D-x =
1, then

necessarily C + D = 1 .

(6) If Cx + D-x =
1, then [6-4] -Cx + -D-x = 0, and [7-2]

-DcxcC.

7-26 If C + D =
1, then the equation Cx + D-x = 1 is satisfied by

x = -D + uC, where u is arbitrary.

Since [6-4] C x + D -x = 1 is equivalent to -C x + -D -x = 0,

and C + D = 1 is equivalent to -C -D = 0, the theorem follows

from 7-24.

7-27 If A x + B -x = C x + D -x, the equation of condition is

(A-C + -A C)(B-D + -BD) =

and the solution is B -D + -B D c x c A C + -A -C, or

x = B -D + -B D + u (A C + -A -C), where u is arbitrary.

By 7' 13, A x + B -x = C x + D -x is equivalent to

(A-C + -ACx + B-D + -Bd-x = 0.
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Hence, by 7-221, the equation of condition is as given above.

And by 7 2 and 7 24, the solution is

B-D + -BDcxc-(A-C + -A C), or

x = B -D + -B D + u--(A -C + -A C), where u is arbitrary.

And [6-4] -(A-C + -AC) = AC + -A-C.

The subject of simultaneous equations is very simple, although the

clearest notation we have been able to devise is somewhat cumbersome.

7-3 The condition that n equations in one unknown, A 1x + B l -x =
0,

A*x + B2 -x =
0, ... A nx + B n -x = 0, may be regarded as simultaneous, is

the condition that

(A* B k
)
=

h, k

And the solution which they give, on that condition, is

^B k cxc H-A k

k k

or x = 23 B k + u- II -.4*, where u is arbitrary.
k k

By 6-42 and 5-72, A lx + B 1 -x = 0, A2x + B2 -x = 0, ...

A nx + B n -x = 0, are together equivalent to

(A
1 + A 2 + . . . + A n

)x + (B
1 + B 2 + . . . + B n

) -x =

or A k * + Z B k -x =
k k

By 7 23, the equation of condition here is

2 A k x^B k .=
k k

But Z A k x Z B k = (A
1 + A 2 + . . . + A n

)(B
l + Bz + . . . + B n

)

k k

= A 1 B 1 + A 1 Bz + . . . + A 1 B n + A* B 1 + A 2 B2 + . . . + A 2 B n

+ A 3 B l + A 3 B2 +...+A 3 B n +...+A n B l +...+A n B n

= ^(AB k
}.

h, k

And by 7 2 and 7 24, the solution here is

or
k k

And by 5-95, -{ 2 A k
]
= JI ~A k

.

k k

It may be noted that from the solution in this equation, nz
partial solu
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tions of the form Bh ex c-A' can be derived, for

Bh c B k and H -A" c -A*.
k k

Similarly, 22n 1 partial solutions can be derived by taking selections of

members of X^ B k an^ II -A k
.

k k

Symmetrical and Unsymmetrical Constituents of Equations. Some of

the most important properties of equations of the form A x + B -x = are

made clear by dividing the equation into two constituents the most

comprehensive constituent which is symmetrical with respect to x and -x,

and a completely unsymmetrical constituent. For brevity, these may
be called simply the "symmetrical constituent" and the "unsymmetrical

constituent ". In order to get the symmetrical constituent complete, it

is necessary to expand each term with reference to every element in the

function, coefficients included. Thus in A x + B -x = it is necessary to

expand the first term with respect to B, and the second with respect to A.

A(B + -B)x + (A + -A) B -x = A B x + A B -x + A -B x + -A B -x =

By 5 72, this is equivalent to the two equations,

A B (x + -x) = AB = and A -B x + -A B -x =

The first of these is the symmetrical constituent; the second is the unsym-

metrical constituent. The symmetrical constituent will always be the equa-

tion of condition, while the unsymmetrical constituent will give the solution.

But the form of the solution will most frequently be simplified by con-

sidering the symmetrical constituent also. The unsymmetrical constituent

will always be such that its equation of condition is satisfied a priori. Thus

the equation of condition of

A -B x .+ -A B-x =

is (A -B)(-A B) =
0, which is an identity.

By this method of considering symmetrical and unsymmetrical con-

stituents, equations which are indeterminate reveal that fact by having

no unsymmetrical constituent for the solution. Also, the method enables

us to treat even complicated equations by inspection. Remembering that

any term in which neither x nor -x appears belongs to the symmetrical

constituent, as does also the product of the coefficients of x and -x, the

separation can be made directly. For example,

(c + x) d + -c -d + (-a + -a;) 6 =
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will have as its equation of condition

c d + -c -d + -ab + b d =

and the solution will be

bc.xc.-d

Also, as we shall see shortly, the symmetrical constituent is always the

complete resultant of the elimination of x.

The method does not readily apply to equations which do not have

one member 0. But these can always be reduced to that form. How it

extends to equations in more than one unknown will be clear from the

treatment of such equations.

Eliminations. The problem of elimination is the problem, what equa-

tions not involving x or -x can be derived from a given equation, or equa-

tions, wrhich do involve x and -x. In most algebras, one term can, under

favorable circumstances, be eliminated from two equations, two terms

from three, n terms from n + 1 equations. But in this algebra any number

of terms (and their negatives) can be eliminated from a single equation;

and the terms to be eliminated may be chosen at will. The principles

whereby such eliminations are performed have already been provided in

theorems concerning the equation of condition.

7-4 A B = contains all the equations not involving x or -x which can

be derived from A x + B -x = 0.

By 7 24, the complete solution of A x + B -x = is

x = B -u + -A u

Substituting this value of x in the equation, wre have

A (B -u + -A u) + B (-B -u + A u) = A B -u + A B u = A B =

Hence A B = is the complete resultant of the elimination of x.

It is at once clear that the resultant of the elimination of x coincides

with the equation of condition for solution and with the symmetrical con-

stituent of the equation.

7-41 If n elements, Xi, x 2 ,
xs , ... xn ,

be eliminated from any equation,

F(XI, Xz, x s , ... Xn) = 0, the complete resultant is the equation to of the

product of the coefficients in F(XI, x2 , x 3 ,
... xn).

(a) By 6-1 and 7-4, the theorem is true for the elimination of

one element, x, from any equation, f(x)
= 0.

(6) If the theorem hold for the elimination of k elements, x\, xz ,
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... Xk, from any equation, $(x\, Xz, ... Xk) =
0, then it will hold

for the elimination of k + 1 elements, x\, x 2 , ... Xk, Xk+i, from any

equation, ty(xi, xz , ... Xk, Xk+i)
=

0, for:

By 6- 11, V(xi, xz, . . . xk , ar/fc+i)
=

f(xi, Xz, ... xk} -xk+i

And the coefficients in SF will be the coefficients in / and / '. By
7-4, the complete resultant of eliminating xk+i from

f(xi, x z , ... Xk) -xk+ i +/
r

(xi, x 2 , ... Xk)--xk+i =

is /Oi, x 2 , ... Xk) x/ '(xi, xz, . . . xk )
=

And by 6-43, f(xi, x 2 , ... xk] *f'(xi, x 2 ,
... xk)

= is equivalent

to Q(XI, x2 , ... Xk) = 0, where $ is a function such that if the

coefficients in/ be PI, P2 ,
P3 , etc., and the corresponding coefficients

in/' be Qi, Qz, Qs, etc., then the corresponding coefficients in $ will

be PiQi, PzQz, PsQs, etc. Hence if the theorem hold for the elimina-

tion of k elements, x\, x 2 , ... Xk, from 3>(xi, x 2 , ... xk)
=

0, this

elimination will give

(P 1Q 1)(P2Q 2)(P3Q 3). . .
== (PiP2P3 . ..QiQ&. . .)

= 0,

where PiP2P3 . . .QiQzQs- is the product of the coefficients in <,

or in/ and/
'

i. e., the product of the coefficients in ^.

Hence if the theorem hold for the elimination of k elements, x\, xz,

... Xk, from Q(XI, Xz, ... xk)
= 0, it will hold for the elimination of

k + 1 elements, xi, xz, ... xk , xk+ \, from ^(a;i, Xz, ... Xk, xk+ i)
= 0,

provided Xk+\ be the first eliminated.

But since the order of terms in a function is immaterial, and for

any order of elements in the argument of a function, there is a

normal form of the function, ^+ i in the above may be any of the

A: + 1 elements in ^, and the order of elimination is immaterial.

(c) Since (a) and (6) hold, therefore the theorem holds for the

elimination of any number of elements from the equation to of

any function of these elements.

By this theorem, it is possible to eliminate simultaneously any number of

elements from any equation, by the following procedure: (1) Reduce the

equation to the form in which one member is 0, unless it already have that

form; (2) Develop the other member of the equation as a normal-form

function of the elements to be eliminated; (3) Equate to the product of

the coefficients in this function. This will be the complete elimination

resultant.
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Occasionally it is convenient to have the elimination resultant in the

form of an equation with one member 1, especially if the equation which

gives the resultant have that form.

7-42 The complete resultant of eliminating n elements, x\, x%, ... xn ,

from any equation, F(x\, x 2 , ... xn)
=

1, is the equation to 1 of the sum

of the coefficients in F(XI, x2 , ... #).

Let AI, A 2 , AS, etc., be the coefficients in F(XI, x 2 , ... xn).

F(XI, x 2 , ... Xn) = 1 is equivalent to -[F(xi, x 2 , ... xn}\
= 0. And

by 6-41, -[F(xi, x 2 , ... #)] is a function, $(xi, x 2 , ... xn), such

that if any coefficient in F be Ak , the corresponding coefficient in $

will be -Ak.

Hence, by 7-41, the complete resultant of eliminating x i} x z ,
... xn,

from F(XI, Xz, ... Xn) = 1 is

IL-A=0, or -{11-4} =1
But [5-95] -{ 11-^1 = T.A. Hence Q.E.D.

For purposes of application of the algebra to ordinary reasoning, elimina-

tion is a process more important than solution, since most processes of

reasoning take place through the elimination of "middle" terms. For

example :

If all 6 is x, 6 ex, b -x =

and no a is x, a x =
0,

then a x + b -x = 0. Whence, by elimination, a b = 0, or no a is b.

Solution of Equations in more than one Unknown. The complete solu-

tion of any equation in more than one unknown may be accomplished by

eliminating all the unknowns except one and solving for that one, repeating

the process for each of the unknowns. Such solution will be complete

because the elimination, in each case, will give the complete resultant which

is independent of the unknowns eliminated, and each solution will be a

solution for one unknown, and complete, by previous theorems. How-

ever, general formulae of the solution of any equation in n unknowns, for

each of the unknowns, can be proved.

7 5 The equation of condition of any equation in n unknowns is identical

with the resultant of the elimination of all the unknowns; and this resultant

is the condition of the solution with respect to each of the unknowns sepa-

rately.

(a) If the equation in n unknowns be of the form

F(XI, xz , . . . Xn) = 0:
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Let the coefficients in F(x\, xz , ... #) be A\, At, As, etc. Then,

by 6 -32,

II A c F(xi, xz, . . . xn}

and [5 65] H A = is a condition of the possibility of

F(XI, xz, ... xn)
=

And [7-41] II A = is the resultant of the elimination of x\, Xz,

... xn , from F(XI, x2) ... xn)
= 0.

(6) If the equation in n unknowns have some other form than

F(XI, x2 , ... Xn) = 0, then by 7-1, it has an equivalent which is

of that form, and its equation of condition and its elimination

resultant are the equivalents of the equation of condition and

elimination resultant of its equivalent which has the form

F(Xi, Xz, ... Xn)
=

(c) The result of the elimination of all the unknowns is the

equation of condition with respect to any one of them, say Xk,

because :

(1) The equation to be solved for Xk will be the result of eliminat-

ing all the unknowns but Xk from the original equation; and

(2) The condition that this equation, in which Xk is the only

unknown, have a solution for Xk is, by (a) and (6), the same as the

result of eliminating Xk from it.

Hence the equation of condition with respect to Xk is the same as

the result of eliminating, from the original equation, first all the

other unknowns and then Xk-

And by 7-41 and (6), the result of eliminating the unknowns is

independent of the order in which they are eliminated.

Since this theorem holds, it will be unnecessary to investigate separately

the equation of condition for the various forms of equations; they are

already given in the theorems concerning elimination.

7-51 Any equation in n unknowns, of the form F(XI, x 2 ,
... xn)

= 0,

provided its equation of condition be satisfied, gives a solution for each

of the unknowns as follows: Let Xk be any one of the unknowns; let PI, PZ,

P3 , etc., be the coefficients of those terms in F(XI, xz> ... x n) in which Xk

is positive, and Qi, Qz, Qs, etc., the coefficients of those terms in which Xk

is negative. The solution then is

JJ Q c xk c ^ -P, or Xk = II Q + u ^ -P, where u is arbitrary.
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(a) By 6-11, for some / and some /', F(x\., x 2 , ... xn)
= is

equivalent to f(xi, x 2 , ... xn-i) -xn +f '(xi, x 2 , ... xn-i}--xn = 0.

Let the coefficients in / be PI, P2 , PS, etc., in /
' be Qi, Q 2 , Qs, etc.

Then PI, P 2 , PS, etc., will be the coefficients of those terms in F
in which Xk is positive, Qi, Q 2 , Q s , the coefficients of terms in F in

which Xk is negative.

If f(xi, xz, ... xn-i)-xn be regarded as a function of the variables,

x i} Xz, ... xn-i, its coefficients will be P\xn ,
P2xn ,

P3xn , etc.

And if f'(xi, x 2 ,
... xn-i)--xn be regarded as a function of Xi, x 2 ,

. . . xn-i, its coefficients will be Qi -xn , Q2 -xn , Q s -xn ,
etc.

Hence, by 6-42,

f(Xi, X Z ,
. . . Xn-j_) -Xn +f '(Xi, X 2) ... Xr^i)"Xn =

is equivalent to ^(xi, x 2 ,
. . . xn-\)

= 0, where ^ is a function in

which the coefficients are (Pi xn + Qi -xn}, (Pz xn + Q 2 -xn), (P3xn

+ Qs -Xn), etc.

And SlK^i, x z ,
... n-i)

= is equivalent to F(XI, x 2 ,
. . . x n )

= 0.

By 7-41, the complete resultant of the elimination of Xi, x 2 ,
... xn-i

from ^(#1, Xz, ... Xn-i) = will be the equation to of the product

of its coefficients,

Qr-xJ =0

But any expression of the form PrXn + QT -xn is a normal form func-

tion of xn . Hence, by 6 43,

II (P#n + Qr -Xn) = H P#n + II Qr ~Xn

By 7-2 and 7-24, the solution of H P^n+ TlQr -xn = is

,
or xn = + u.

And [5-951] -{UP} = Z-J-
(6) Since the order of terms in a function is immaterial, and

for any order of the variables in the argument of a function there is a

normal form of the function, xn in the above may be any one of the

variables in F(XI, x 2 , ... xn), and f(xi, x2 ,
... xn-J and f'(xi, x 2 ,

. . . xn-i) each some function of the remaining n 1 variables.

Therefore, the theorem holds for any one of the variables, Xk-

That a single equation gives a solution for any number of unknowns

is another peculiarity of the algebra, due to the fact that from a single

equation any number of unknowns may be eliminated.
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As an example of the last theorem, we give the solution of the exemplar

equation in two unknowns, first directly from the theorem, then by elimina-

tion and solution for each unknown separately.

(1) A x y + B -x y + C x -y + D -x -y = has the equation of condition,

ABCD =

Provided this be satisfied, the solutions for x and y are

B DC.re -A +-C, or x = B D + u (-A + -C)

CDcyc-A+-B, or y = C D + u (-A + -B)

(2) A x y + B -x y + C x -y + D -x -y = is equivalent to

(a) (A x + B -) y -f (C x + D -x) -y =

and to (6) (A y + C -y} x + (B y + D -y} -x =

Eliminating y from (a), we have

The equation of condition with respect to x is, then,

(AC)(BD) = ABCD =

And the solution for x is

B D ex c-(A C), or x = B D + ir(A C). And -(.4 C) = -A + -C

Eliminating x from (6), we have

(Ay+C-y)(By + D-y) = ABy+CD-y =

The equation of condition with respect to y is, then, ABCD = 0. And

the solution for y is

CDcyc-(AB), or y = CD+v-(AB). And -(A B} = -A + -B

Another method of solution for equations in two unknowns, x and y,

would be to solve for y and for -y in terms of the coefficients, with x and u

as undetermined parameters, then eliminate y by substituting this value

of it in the original equation, and solve for x. By a similar substitution,

x may then be eliminated and the resulting equation solved for y. This

method may inspire more confidence on the part of those unfamiliar with

this algebra, since it is a general algebraic method, except that in other

algebras more than one equation is required.

The solution of A x y + B -x y+ C x -y + D -x -y = for y is

y = (C x + D -x) + u--(A x + B -x} = (C + u -A) x + (D + u -B) -x
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The solution for -y is

-y = (Ax + B -x} + v-(C x + D -x) = (A+v -C) x + (B + v -D} -x

Substituting these values for y and -y in the original equation,

(Ax + B -x)[(C + u-A)x + (D + u -B) -x]

+ (C x + D -x)[(A + v-C)x + (B + v -D) -x\

= A (C + u -A] x + B (D + u -B} -x + C (A + v -C) x + D (B + v -D) -x

= ACx + BD-x = 0.

Hence BDcxc-A+-C.

Theoretically, this method can be extended to equations in any number of

unknowns: practically, it is too cumbersome and tedious to be used at all.

7 52 Any equation in n unknowns, of the form

F(XI, x 2 ,
... xn)

=
f(xi, xz, ... xn )

gives a solution for each of the unknowns as follows: Let xk be any one

of the unknowns; let PI, P 2 , PS, Qi, Qz, Qs, be the coefficients in F,

and MI, MI, M s ,
. . . NI, NZ, N3 ,

. . . the coefficients of the corresponding

terms in /, so that Pr and Mr are coefficients of terms in which xk is positive,

and Qr and Nr are coefficients of terms in which Xk is negative. The solu-

tion for Xk then is

II (Qr -Nr + -Q r Nr) c xk c (Pr Mr + -P r -MJ
r r

Or Xk
= II (Qr -Nr + -Qr Nr)+U-^ (Pr Mr + -P r ~Mr)

r r

By 7-13, F(XI, x 2 , ... Xn) =
f(xi, x2 ,

... xn) is equivalent to

<b(xi, Xz, ... xn )
= 0, where 4> is a function such that if A r and B r

be coefficients of any two corresponding terms in F and /, then the

coefficient of the corresponding term in $ will be A r -B r + -A r B r .

Hence, by 7-51, the solution will be

II (Q, -Nr + -Qr Nr ~)
C Xk C -(Pr ~Mr + ~Pr Mr)

r r

Or Xk
= II (Qr -Nr + -Q r Nr) + U ^ "(Pr "Mr + -P r Jfr)

r r

And [6-4] -(Pr -i r + -P r i r)
= (Pr Mr + -Pr

-Mr) .

7-53 The condition that m equations in n unknowns, each of the form

F(XI, Xz, ... xn )
=

0, may be regarded as simultaneous, is as follows:

Let the coefficients of the terms in F1
,
in the equation Fl

(x i} x2 , ... xn}
= 0,

be P^, P2S Pg1

,
. . . Q!

1

, Q 2
J

, Q s
l

, ...; let the coefficients of the corre-
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spending terms in F2
, in the equation F2

(xi, a* 2 , ... xn)
= 0, be Pi

2
,
P2

2
,

PS, Qi
2
, Qz

2
, Qs

2
, .', the coefficients of the corresponding terms in

Fm, in the equation Fm (xi, x2 , ... x n)
= 0, be Pi"

1

,
P2

m
,
P3

m
,

. . . Qi
m

, Q 2
m

,

Q 3
m

, .... The condition then is

r A r h

Or if C/ be any coefficient, whether P or Q, in PA
, the condition is

r A

And the solution which n such equations give, on this condition, for any

one of the unknowns, xk ,
is as follows: Let PA P2

A
, Pzh

, ... be the coef-

ficients of those terms, in any one of the equations Fh = 0, in which Xk is

positive, and let Qi
h
, Q2

h
, Q,3

h
, ... be the coefficients of those terms, in

Fh = 0, in which a*& is negative. The solution then is

or
r h r h

By 6-42, m equations in n unknowns, each of the form F(x\, z 2 ,

. . . xn)
= 0, are together equivalent to the single equation $(xi, x2 ,

...)= 0, where each of the coefficients in $ is the sum of the

corresponding coefficients in F1

,
F2

,
F3

,
... Fm . That is, if Pr

l

,
Pr

2
,

. . . Pr
m be the coefficients of corresponding terms in F1

, F2
, ... Fm ,

then the coefficient of the corresponding term in < will be

Pr1 + Pr
2 + . . . + P r>, Or X) Prk

A

and if Q r
l

, Q r
2

,
. . . Q r

m be the coefficients of corresponding terms in

F1
,
F2

, ... Fm
,
then the coefficient of the corresponding term in $

will be

The equation of condition for $ = 0, and hence the condition that

F1 = 0, F2 = 0, ... Fm = may be regarded as simultaneous, is

the equation to of the product of the coefficients in <; that is,

2 P!* X P2
" X P3

" X . . . X 2 <3l" >< Z QS >< Z #3* X . . . =0
A A A A A A

or
r h

And by 7-51, the solution of $(0:1, 2 ,
. . . .rn)

= for Xk is
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or afc=
r h r h

And by 5-95, -[ PP ]
= -PA

/i A

7 54 The condition that m equations in n unknowns, each of the form

F(XI, x 2 ,
... xn)

=
f(xi, x2 ,

... Xn)

may be regarded as simultaneous, is as follows: Let the coefficients in F1
,

in the equation F1 =f l
, be Pi1

, Pa
1

, Ps1

, . . . Qi
1
, &1

, Qa
1
, . . ., and let the

coefficients of the corresponding terms in /
l

, in the equation F1 = f
l
, be

Mi1
, Mzl

,
M3

l

, . . . Ni1
,
N2

l
, Ns1

, . . .; let the coefficients of the corresponding

terms in F2
,
in the equation F2 = f

2
,
be P^, P2

2
,
P3

2
, . . . Qi

2
, Q2

2
, Q3

2
,

and let the coefficients of the corresponding terms in /
2 be M i

2
,
M2

2
, M3

2
,

. . . Ni2
, Nzz

,
Ns

2
, . . .

;
let the coefficients of the corresponding terms in Fm

,

in the equation Fm = /
m

, be Pim,
P2

m
,
P3

TO
, . . . Qi

m
, Qz

m
, Qs

m
, -, and

let the coefficients of the corresponding terms in /
m be Mim

,
M z

m
,
Ms

m
,

. . . Nim,
N2

m
,
N3

m
, .... The condition then is

II IE (P/ ~Mrh + -Pr
h Mr

h
}} X H [E (&* -#r* + -Qr* ^r*)] =

r h r h

or if A r
h
represent any coefficient in Fh

, whether P or Q, and B r
h
represent

the corresponding coefficient in /
h

,
whether M or N, the condition is

II [E(^r*-Br* + -^r*5r*)] =0
r h

And the solution which m such equations give, on this condition, for any

one of the unknowns, Xk, is as follows: Let Pr
h and Mr

h be the coefficients

of those terms, in any one of the equations Fh = f
h
,
in which xk is positive,

and let Qr
h and Nr

h be the coefficients of the terms, in Fh = f
h
,
in which Xk

is negative. The solution then is

II [E (Qr
k -Nrk + ~Qr

h
N*)] C Xk C E til (P^ Mr

h + ~Pr
h ~MT

h
}}

r h r h

Or Xk = I
r

By 7-13, .FA(i, X2 , ... )
= /

A
(a;:, xz , ... ^n) is equivalent to

ty(xi, x2 ,
... a;n)

=
0, where ^ is a function such that if Qr

h and Nr
h

be coefficients of corresponding terms in Fh and /
h
, the coefficient

of the corresponding term in ^ will be Qr
h -Nr

h + -Qr
h Nr

h
, and if

Pr
* and Mr

h be coefficients of corresponding terms in Fh and /
h

, the

coefficient of the corresponding term in ^ will be Pr
* -Mr

h + -Pr
h Mr

h
.

And -(Pr
h -Mr

h + -Pr
h Mr

h
)
= Pr

h Mr
h + -Pr

* -3fr\

Hence the theorem follows from 7 53.

12
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F(XI, x2 ,
. . . Xn) =

f(x\, #2, ... x n} is a perfectly general equation, since

F and / may be any expressions in the algebra, developed as functions of

the variables in question. 7-54 gives, then, the condition and the solution

of any number of simultaneous equations, in any number of unknowns, for

each of the unknowns. This algebra particularly lends itself to generaliza-

tion, and this is its most general theorem. It is the most general theorem

concerning solutions in the whole of mathematics.

Boole's General Problem. Boole proposed the following as the general

problem of the algebra of logic.
11

Given any equation connecting the symbols x, y, ... w, z, .... Re-

quired to determine the logical expression of any class expressed in any

way by the symbols x, y, ... in terms of the remaining symbols w, z, ....

We may express this: Given t = f(x, y, . . .) and <(, y, . . . )
= ^(w, z,

. . . ) ;
to determine t in terms of w, z, .... This is perfectly general, since

if x, y, ... and w, z, ... are connected by any number of equations, there

is, by 7-1 and 5-72, a single equation equivalent to them all. The rule

for solution may be stated: Reduce both t = f(x, y, . . .) and $(x, y, . . .)

= ^ (w, z, . . . ) to the form of equations with one member 0, combine them

by addition into a single equation, eliminate x, y, . . .
,
and solve for t. By

7-1, the form of equation with one member is equivalent to the other

form. And by 5-72, the sum of two equations with one member is

equivalent to the equations added. Hence the single equation resulting

from the process prescribed by our rule will contain all the data. The

result of eliminating will be the complete resultant which is independent

of these, and the solution for t will thus be the most complete determination

of t in terms of w, z, ... afforded by the data.

Consequences of Equations in General. A word of caution with refer-

ence to the manipulation of equations in this algebra may not be out of

place. As compared with other algebras, the algebra of logic gives more

room for choice in this matter. Further, in the most useful applications

of the algebra, there are frequently problems of procedure which are not

resolved simply by eliminating this and solving for that. The choice of

method must, then, be determined with reference to the end in view. But

the following general rules are of service:

(1) Get the completest possible expression = 0, or the least inclusive

possible expression = 1.

a + b + c+ . . . =0 gives a =
0, 6 =

0, c =
0, . . .

,
a + 6 = 0, a + c =

0,

"Laws of Thought, p. 140.
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etc. But a = will not generally give a + 6 =
0, etc. Also, a = 1 gives

a + b =
1, a+ . . .

=
1, but a + b = 1 will not generally give a = 1.

(2) Reduce any number of equations, with which it is necessary to deal,

to a single equivalent equation, by first reducing each to the form in which

one member is and then adding. The various constituent equations

can always be recovered if that be desirable, and the single equation gives

other derivatives also, besides being easier to manipulate. Do not forget

that it is possible so to combine equations that the result is less general

than the data. If wTe have a = and 6 = 0, we have also a b, or a b = 0,

or a + 6 =
0, according to the mode of combination. But a + b = is

equivalent to the data, while the other two are less comprehensive.

A general method by which consequences of a given equation, in any
desired terms, may be derived, was formulated by Poretsky,

12 and is, in

fact, a corollary of his Law of Forms, given above. We have seen that

this law may be formulated as the principle that if a =
b, and therefore

a-b + -ab = and ab + -a-b =
1, then any t is such that a -b + -a b c t

and tcab + -a-b, or any t = the t which contains the "zero member"

of the set of equations equivalent to a b, and is contained in the
"
whole

member" of this set. Now if x c t, u x c t, for any u whatever, and thus the

"zero member" of the Law of Forms may be multiplied by any arbitrarily

chosen u which we choose to introduce. Similarly, if t c y, then t c y + v,

and the "whole member" in the Law of Forms may be increased by the

addition of any arbitrarily chosen v. This gives the Law of Consequences.

7-6 If a =
b, then t = (a b + -a -b + u) t + v (a -b + -a b) -t, where u and v

are arbitrary.

[7 1 12J If a =
b, then a -b + -a b = and ab + -a-b = 1.

Hence (a b + -a -b + u) t + v (a -b + -a 6) -t = (1 + u) t + v -i --= t.

This law includes all the possible consequences of the given equation.

First, let us see that it is more general than the previous formulae of elimina-

tion and solution. Given the equation A x + B -x = 0, and choosing A B
for t, we should get the elimination resultant.

If A x + B -x = 0, then A B = (-A x + -B -x + u} A B
+ v(Ax + B-x)(-A+-B)

= u A B + v (A -B x + -A B -x).

Since u and v are both arbitrary and may assume the value 0, there-

fore AB = 0.

12
Sept lois, etc., Chap. xn.
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But this is only one of the unlimited expressions for A B which the law

gives. Letting u = 0, and v = 1, we have

A B = A -B x + -A B -x

Letting u = A and v = B, we have

AB = AB + -A B -x

And so on. But it will be found that every one of the equivalents of A B
which the law gives will be null.

Choosing x for our t, we should get the solution.

If A x + B -x =
0, then x = (-A x + -B -x + ii) x + v (A x + B -x) -x

= (-A + w) x + v B -x.

Since u and v may both assume the value 0,

x = -A x, or x c -A (1)

And since u and v may both assume the value 1,

x = x + B -x, or B -x c x

But if -a; c x, then B -x = (B -x) x = 0, or B c x (2)

Hence, (1) and (2), Bex c-A.

When u = and v =
1, the Law of Consequences becomes simply the Law

of Forms. For these values in the above,

x = -A x + B -x

which is the form which Poretsky gives the solution for x.

The introduction of the arbitraries, u and v, in the Law of Consequences

extends the principle stated by the Law of Forms so that it covers not

only all equivalents of the given equation but also all the non-equivalent

inferences. As the explanation which precedes the proof suggests, this is

accomplished by allowing the limits of the function equated to t to be

expressed in all possible ways. If a =
b, and therefore, by the Law of

Forms,

t = (a b + -a -6) t + (a -b + -a 6) -t

the lower limit of t, 0, is expressed as a -b + -a b, and the upper limit of t,

1, is expressed as a b + -a -b. In the Law of Consequences, the lower

limit, 0, is expressed as v (a-b + -ab), that is, in all possible wr

ays which

can be derived from its expression as a-b + -ab; and the upper limit, 1, is

expressed as a b + -a -b + u, that is, in all possible ways which can be derived

from its expression as a b + -a -6. Since an expression of the form

t = (a b + -a -b) t + (a -b + -a b) -t
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or of the form t = (a b + -a -b + w) t + v (a -b + -a 6) -t

determines t only in the sense of thus expressing its limits, and the Law of

Consequences covers all possible ways of expressing these limits, it covers

all possible inferences from the given equation. The number of such

inferences is, of course, unlimited. The number expressible in terms of n

elements will be the number of derivatives from an equation with one

member and the other member expanded with reference to n elements.

The number of constituent terms of this expanded member will be 2 n
,

and the number of combinations formed from them will be 22?l
. Therefore,

since p\ + p2 + PS + . . . =0 gives pi = 0, p 2
= 0, p3

= 0, etc., this is the

number of consequences of a given equation which are expressible in terms

of n elements.

As one illustration of this law, Poretsky gives the sixteen determinations

of a in terms of the three elements, a, b, and c, which can be derived from

the premises of the syllogism in Barbara: 13

If all a is b, a -b 0,

and all b is c, b -c = 0,

then a-b + b -c = 0, and hence,

a = a (b + -c) = a (b + c)
= a (-b + c)

= a + b -c = a b = a (b c + -b -c)

= b -c + a (b c + -b -c) =ac = b-c + ac = a (-6 + c) + -a b -c = ab c

= b -c + ab c = a (b c + -b -c) + -a b -c = a c + -a b -c = a b c + -a b -c

The Inverse Problem of Consequences. Just as the Law of Conse-

quences expresses any inference from a = b by taking advantage of the fact

that if a-b + -ab = 0, then (a-b + -ab)v =
0, and if ab + -a-b =

1,

then a b + -a -b + u = 1
;

so the formula for any equation which will give

the inference a = b can be expressed by taking advantage of the fact that if

v (a b + -a -b) =
1, then ab + -a-b =

1, and if a -b + -a b + u = 0, then

a-b + -ab = 0. We thus get Poretsky's Law of Causes, or as it would

be better translated, the Law of Sufficient Conditions. 14

7 7 If for some value of u and some value of v

t = v (a b + -a -6) t + (a -b + -a b + u) -t,

then a = b.

If t = v (a b + -a -6) t + (a -b + -a b + u) -t, then [7-1, 5-72]

[v (a b + -a -b) t + (a -b + -a b + it) -t] -t =

=
(a -b + -a b + u) -t = (a -b + -a 6) -t + u -t =

13
Ibid., pp. QBff.

14
Ibid., Chap. xxm.
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Hence (a -b + -a b) -t = (1)

Hence also [5-7] t = v (ab + -a-b) t, and [4-9]

t -[v (a b + -a -b)] = = t (-v + a -b + -a 6)
= t -v + (a -6 + -a 6) t

Hence [5 72] (a -6 + -a 6) t = (2)

By (1) and (2), (a -6 + -a 6) (t + -t)
= = a -6 + -a b.

Hence [7-1] a = b.

Both the Law of Consequences and the Law of Sufficient Conditions

are more general than the Law of Forms, which may be derived from either.

Important as are these contributions of Poretsky, the student must not

be misled into supposing that by their use any desired consequence or

sufficient condition of a given equation can be found automatically. The

only sense in which these laws give results automatically is the sense in

which they make it possible to exhaust the list of consequences or conditions

expressible in terms of a given set of elements. And since this process is

ordinarily too lengthy for practical purposes, these laws are of assistance

principally for testing results suggested by some subsidiary method or by

"intuition ". One has to discover for himself what values of the arbitraries

u and v will give the desired result.

V. FUNDAMENTAL LAWS OF THE THEORY OF INEQUATIONS

In this algebra, the assertory or copulative relations are = and c .

The denial of a = b may conveniently be symbolized in the customary way:

8-01 a 3= b is equivalent to "a = b is false ". Def.

We might use a symbol also for "a c b is false ". But since a c b is equiva-

lent to a b = a and to a -b = 0, its negative may be represented by a b 4= a

or by a -6 4= 0. It is less necessary to have a separate symbolism for

"acb is false ", since "a is not contained in b" is seldom met with in logic

except where a and b are mutually exclusive, in which case a b 0.

For every proposition of the form "If P is true, then Q is true ", there is

another,
"
If Q is false, then P is false ". This is the principle of the reductio

ad absurdum, or the simplest form of it. In terms of the relations =

and 4=> the more important forms of this principle are:

(1) "If a =
b, then c = d", gives also, "If c 4= d, then a 4= 6 ".

(2) "If a =
b, then c = dandh = k", gives also,

"
If c 4= Athena =|= 6",

and "If h =1= Mhena * b".

(3) "If a = b and c = d, then h = k", gives also, "If a = b and h =|= k,

then c 4= d", and "
If c = d and h =(= A-, then a 4= b ".
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(4) "a = b is equivalent to c = d", gives also, "a 4= b is equivalent

toe 4= d".

(5) "a = b is equivalent to the set, c = d, h =
k, . . .," gives also,

"a =}= b is equivalent to 'Either c =j= ^ or A =|= k, or ...'". 16

The general forms of these principles are themselves theorems of the

"calculus of propositions" the application of this algebra to propositions.

But the calculus of propositions, as an applied logic, cannot be derived

from this algebra without a circle in the proof, for the reasoning in demon-

stration of the theorems presupposes the logical laws of propositions at

every step. We must, then, regard these laws of the reductio ad absurdum,

like the principles of proof previously used, as given us by ordinary logic,

which mathematics generally presupposes. In later chapters,
16 we shall

discuss another mode of developing mathematical logic the logistic

method wrhich avoids the paradox of assuming the principles of logic in

order to prove them. For the present, our procedure may be viewed simply

as an application of the reductio ad absurdum in ways in which any mathe-

matician feels free to make use of that principle.

Since the propositions concerning inequations follow immediately, for

the most part, from those concerning equations, proof will ordinarily be

unnecessary.

Elementary Theorems. The more important of the elementary propo-

sitions are as follows:

8-1 If a c =%= b c, then a 4= b.

[2-1]

8-12 If a + c 4= b + c, then a 4= b.

[3-37]

8-13 a =1= b is equivalent to -a =)= -b.

[3-2]

8-14 a + b 4= b, a b =4= a, -a + b =f= 1, and a -b 4= are all equivalent.

[4-9]

8-15 If a + b = x and b =f= %, then a 4=

[5-7]

8-151 If a = and b 4= x, then a + b 4= %

[5-7]

8-16 If a b = x and b 3= x, then a 4= 1.

[5-71]

15 "Either ... or ..." is here to be interpreted as not excluding the possibility that

both should be true.
18
Chap, iv, Sect, vi, and Chap. v.
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8- 161 If a = 1 and 6 4= x, then ab = x.

[5-71]

8-17 If a + b 4= and a = 0, then b ={= 0.

[5-72]

8-18 If a 6 4= 1 and a =
1, then 6 4= 1.

[5-73]

8-17 allows us to drop null terms from any sum 4= 0. In this, it gives

a rule by which an equation and an inequation may be combined. Suppose,

for example, a + b 4= and x = 0.

a + b = (a + 6) (x + -x) = ax+bx+a-x+b -x.

Hence a x + b x + a -x + b -x 4= 0.

But if x = 0, then a x = and b x = 0.

Hence [8 17] a -x + b -x 4= 0.

8-2 If a 4= 0, then a + b 4= 0.

[5-72]

8-21 If a 4= 1, then ab 4= 1.

[5-73]

8-22 If a b 4= 0, then a 4= and 6 4= 0.

[1-5]

8-23 If a+b 4= 1, then a 4= 1 and b 4= 1.

[4-5]

8-24 If a 6 4= # and a = x, then b =]= a:.

[1-2]

8-25 If a 4= and a c 6, then 6 =1= 0.

[1-9] If a c 6, then a b = a.

Hence if a 4= and a c 6, then a 6 4= 0.

Hence [8-22] 6 + 0.

8-26 a + 6 4= is equivalent to "Either a 4= or b 4= ".

[5-72]

8-261 di + az + a 3 + . . . 4= is equivalent to "Either a x 4= or a 2 4= or

o8 4= 0, or . . . ".

8-27 a 6 4= 1 is equivalent to "Either a 4= 1 or 6 4= 1 ".

[5-73]

8-271 ai a2 3 . . . 4= 1 is equivalent to "Either a x 4= 1 or a2 4= 1 or

a, 4= 1 or . . . ".

The difference between 8-26 and 8-27 and their analogues for equa-

tions 5 -72 a + b is equivalent to the pair, a = and 6 = 0, and
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5-73 a b = 1 is equivalent to the pair, a = 1 and b = 1 points to a neces-

sary difference between the treatment of equations and the treatment of

inequations. Two or more equations may always be combined into an

equivalent equation; two or more inequations cannot be combined into

an equivalent inequation. But, by 8-2, a+ b =(= is a consequence of the

pair, a =f= and b 4= 0.

Equivalent Inequations of Different Forms. The laws of the equiva-

lence of inequations follow immediately from their analogues for equations.

8-3 a =}= b is equivalent to a -b + -a b =(= 0.

[7-1]

8-31 a 4= 1 is equivalent to -a 4= 0.

[7-12]

8-32 If 3>(xi, x<z, ... xn) and V(xi, x2 , ... xn) be any two functions of

the same variables, then

i, X 2 , ... Xn ~) 4= ty(Xi, X 2 , ... Xn)

is equivalent to F(x\, x 2 ,
... xn) =j= 0, where F is a function of these same

variables and such that, if Ai, A%, A 3 , etc., be the coefficients in $ and

BI, J5 2,
B s , etc., be the coefficients of the corresponding terms in M>, then

the coefficients of the corresponding terms in F will be A\ -Bi + -Ai BI,

A z -B 2 + -A 2 B 2 , A s -B 3 + -A s B 3> etc.

[7-13]

Poretsky's Law of Forms for inequations will be :

8-33 a =J= is equivalent to t 4= a ~t+ -a t.

[7-151

Or in more general form :

8 34 a 41 b is equivalent to t + (ab + -a -6) t + (a -b + -a b) -t.

[7-16]

Elimination. The laws governing the elimination of elements from an

inequation are not related to the corresponding laws governing equations

by the reductio ad absurdum. But these laws follow from the same theorems

concerning the limits of functions.

8-4 If Ax + B-x 4= 0, then ^4 + 5 + 0.

[6 3] A x + B -x c A + B. Hence [8 251 Q.E.D.

8-41 If the coefficients in any function of n variables, F(XI, x 2 , ... #),
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be Ci, C'2, Cz, etc., and if F(x lt .r 2 , . . . .r n) =|= 0, then

EC*O
[6-32] F(xi, .TO, ... xn)cC. Hence [8-25] Q.E.D.

Thus, to eliminate any number of elements from an inequation with

one member 0, reduce the other member to the form of a normal function

of the elements to be eliminated. The elimination is then secured by

putting =(= the sum of the coefficients. The form of elimination resultants

for inequations of other types follows immediately from the above. It is

obvious that they will be analogous to the elimination resultants of equa-

tions as follows: To get the elimination resultant of any inequation, take

the elimination resultant of the corresponding equation and replace = by 4= >

and x by + .

A universal proposition in logic is represented by an equation: "All

a is b
"
by a -b =

0,
" No a is b

"
by a b = 0. Since a particular proposition

is always the contradictory of some universal, any particular proposition

may be represented by an inequation: "Some a is b" by a b =f= 0, "Some

a is not b" by a -b =(= 0. The elimination of the "middle" term from an

equation which represents the combination of two universal premises

gives the equation which represents the universal conclusion. But elimina-

tion of terms from inequations does not represent an analogous logical

process. Two particulars give no conclusion: a particular conclusion

requires one universal premise. The drawing of a particular conclusion is

represented by a process which combines an equation with an inequation,

by 8-17, and then simplifies the result, by 8-22. For example,

All a is b, a -b = 0. .'. a -b c = 0.

Some a is c, a c + 0. .'. a b c + a -b c ={= 0.

.*. abc * 0. [8-17]

Some b is c. .'. be ^ 0. [8-22]

" Solution " of an Inequation. An inequation may be said to have a

solution in the sense that for any inequation involving x an equivalent

inequation one member of which is x can always be found.

8-5 A x + B -x 4= is equivalent to x 4= -A x + B -x.

[7-23]

8-51 A x + B -x =f= is equivalent to "Either B-x^OorAx^O ",

i. e., to "Either B ex is false or x c-A is false ".

[7-2!
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Neither of these "solutions" determines x even within limits. "Bex
is false

"
does not mean " B is excluded from x"; it means only

" B is not

wholly within x ". "Either Bex is false or xc-A is false" does not

determine either an upper or a lower limit of x; and limits x only by ex-

cluding B + u -A from the range of its possible values. Thus "
solutions

"

of inequations are of small significance.

Consequences and Sufficient Conditions of an Inequation. By Poret-

sky's method, the formula for any consequence of a given inequation follows

from the Law of Sufficient Conditions for equations.
17 If for some value

of u and some value of v,

t = v (a b + -a -6) t + (a -b + -a b + u) -t

then a = b. Consequently, we have by the reductio ad absurdum:

8-52 If a =(= 6, then t ^ v (ab + -a -b) t + (a -b + -a b + u) -t, where u

and v are arbitrary.

[7-7]

The formula for the sufficient conditions of an inequation similarly fol-

lows from the Law of Consequences for equations. If a =
b, then

t = (a b + -a -b + u) t + v (a -b + -a b) -t

where u and v are arbitrary. Consequently, by the reductio ad absurdum:

8-53 If for some value of u and some value of v,

t =^ (a b + -a -b + u) t + v (a -b + -a 6) -t

then a =(= b.

[7-6]

System of an Equation and an Inequation. If we have an equation in

one unknown, x, and an inequation which involves x, these may be combined

in either of two ways: (1) each may be reduced to the form in which one

member is and expanded with reference to all the elements involved in

either. Then all the terms which are common to the two may, by 8-17,

be dropped from the inequation; (2) the equation may be solved for x,

and this value substituted for x in the inequation.

8-6 If A x + B -x = and C x + D -x 4= 0, then -A C x + -B D -x 4= 0.

[5-8] If Cx + D-x 4= 0, then

A C x + -A C x + B D -x + -B D -x 4=

17 See Poretsky, Theorie des non-egalites logiques, Chaps. 71, 76.
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[5-72] If Ax + B-x = 0, then A x = and B -x = 0, and hence

A C x = and B D -x = 0.

Hence [8-17] -A C x + -B D -x 4= 0.

The result here is not equivalent to the data, since for one reason

the equation ACx + BD-x = is not equivalent to A x + B -x = 0.

Nevertheless this mode of combination is the one most frequently useful.

8-61 The condition that the equation Ax + B-x = and the inequation

C x + D -x 4= may be regarded as simultaneous is, A B = and -A C

+ -B D 4= 0, and the determination of x which they give is

x 4= (-A -C + A-D)x + (BC + -B D) -x

[7-23] A x + B -x = is equivalent to x = -A x + B -x. Substi-

tuting this value of x in the inequation,

C (-A x + B -x) + D (A x + -B -x} 4=

or (-AC + AD)x+(BC + -BD)-x + 0.

[8-4] A condition of this inequation is

(-AC + AD) + (BC + -BD) 4= 0,

or (-A+B) C + (A + -B) D =j= 0.

But the equation A x + B -x = requires that A B =
0, and hence

that -A + B = -A and -B + A = -B.

Hence if the equation be possible and A B =
0, the condition of the

inequation reduces to -A C + -B D 4= 0.

[8-4] If the original inequation be possible, then C + D 4= 0. But

this condition is already present in -A C + -B D 4= 0, since -A C cC
and hence [8-25] if -A C 4= 0, then (7 + 0, and -BDcD and

hence if -B D 4= 0, then D 4= 0, while [8-26] C + D 4= is equivalent

to
"
Either C 4= or D 4= ", and -A C + -B D 4= is equivalent to

"
Either -A C 4= or -B D 4= ".

Hence the entire condition of the system is expressed by

AB = and -AC + -BD*Q
And [8-5] the solution of the inequation,

(-AC + AD)x + (BC + -BD)-x 4= 0, is

x 4= (-A-C + A-D)x + (BC + -BD)-x

This method gives the most complete determination of x, in the form of

an inequation, afforded by the data.
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VI. NOTE ON THE INVERSE OPERATIONS, "SUBTRACTION" AND

"DIVISION"

It is possible to define "subtraction"
{ }

and "division"
{

:
}
in the

algebra. Let a b be x such that b + x = a. And let a : b be y such

that b y = a. However, these inverse operations are more trouble than

they are worth, and should not be admitted to the system.

In the first place, it is not possible to give these relations a general

meaning. We cannot have in the algebra: (1) If a and b are elements

in K, then a : b is an element in K; nor (2) If a and b are elements in K,

then a b is an element in K. If a : b is an element, y, then for some y

it must be true that b y = a. But if b y = a, then, by 2 2, acby and,

by 5-2, a c b. Thus if a and b be so chosen that a c b is false, then a : 6

cannot be any element in K. To give a : b a general meaning, it would

be required that every element be contained in every element that is,

that all elements in K be identical. Similarly, if a b be an element,

x, in K, then for some x, it must be true that b + x = a. But if b + x =
a,

then, by 2-2, b + xca and, by 5-21, be a. Thus if a and b be so chosen

that & c a is false, then a b cannot be any element in K.

Again, a b and a : b are ambiguous. It might be expected that,

since a + -a =
1, the value of 1 a would be unambiguously -a. But

1 a = x is satisfied by any x such that -a c x. For 1 a = x is equiva-

lent to x + a =
1, which is equivalent to

-(x + a)
= -1 = = -a -x

And -a -x = is equivalent to -a c x. Similarly, it might be expected

that, since a -a = 0, the value of : a would be unambiguously -a. But

: a =
y, or a y =

0, is satisfied by any y such that y c -a. a y = and

y c -a are equivalent.

Finally, these relations can always be otherwise expressed. The value

of a : b is the value of y in the equation, b y = a. b y = a is equivalent to

-a b y + a -b + a -y =

The equation of condition here is a -b 0. And the solution, on this

condition, is

y = a + u (a + -&) = ab + u-a-b, where u is undetermined.

The value of a b is the value of x in the equation, 6 + x = a. b + x = a

is equivalent to

-a b + -a x + a -b -x =
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The equation of condition here is, -a b = 0. And the solution, on this

condition, is

x = a-b + v a = a-b + v ab, where v is undetermined.

In each case, the equation of condition gives the limitation of the meaning

of the expression, and the solution expresses the range of its possible values.



CHAPTER III

APPLICATIONS OF THE BOOLE-SCHRODER ALGEBRA

There are four applications of the classic algebra of logic which are

commonly considered: (1) to spatial entities, (2) to the logical relations

of classes, (3) to the logical relations of propositions, (4) to the logic of

relations.

The application to spatial entities may be made to continuous and

discontinuous segments of a line, or to continuous and discontinuous regions

in a plane, or to continuous and discontinuous regions in space of any

dimensions. Segments of a line and regions in a plane have both been

used as diagrams for the relations of classes and of propositions, but the

application to regions in a plane gives the more workable diagrams, for

obvious reasons. And since it is only for diagrammatic purposes that

the application of the algebra to spatial entities has any importance, we

shall confine our attention to regions in a plane.

I. DIAGRAMS FOR THE LOGICAL RELATIONS OF CLASSES

For diagrammatic purposes, the elements of the algebra, a, b, c, etc.,

will denote continuous or discontinuous regions in a given plane, or in a

circumscribed portion of a plane. 1 represents the plane (or circumscribed

portion) itself. is the null-region which is supposed to be contained in

every region. For any given region, a, -a denotes the plane exclusive of

a, i. e., not-a. The "product", a x6 or a b, is that region which is com-

mon to a and b. If a and b do not "overlap ", then a fy is the null-region, 0.

The "sum", a + b, denotes the region which is either a or b (or both). In

determining a + b, the common region, a b, is not, of course, counted twice

over.

a + b = a-b + ab + -ab.

This is a difference between + in the Boole-Schroder Algebra and the +
of arithmetic. The equation, a =

b, signifies that a and 6 denote the same

region, a c b signifies that a lies wholly within b, that a is included or

contained in b. It should be noted that whenever a =
b, a c b and b c a.

Also, a c a holds always. Thus the relation c is analogous not to < in

arithmetic but to .

175
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While the laws of this algebra hold for regions, thus denoted, however

those regions may be distributed in the plane, not every supposition about

their distribution is equally convenient as a diagram for the relations of

classes. All will be familiar with Euler's diagrams, invented a century

earlier than Boole's algebra. "All a is b" is represented by a circle a

wholly within a circle b;
" No a is b

"
by two circles, a and b, which nowhere

intersect; "Some a is b" and "Some a is not b" by intersecting circles,

sometimes with an asterisk to indicate that division of the diagram \vhich

represents the proposition. The defects of this style of diagram are obvious:

All a is 6 No a is b Some a is 6 Some a is not b

FIG. 1

the representation goes beyond the relation of classes indicated by the propo-

sition. In the case of "All a is b", the circle a falls within b in such wise

as to suggest that we may infer "Some b is not a", but this inference is

not valid. The representation of "No a is b" similarly suggests "Some

things are neither a nor b", 'which also is unwarranted. With these dia-

grams, there is no way of indicating whether a given region is null. But

the general assumption that no region of the diagram is null leads to the

misinterpretations mentioned, and to others which are similar. Yet

Euler's diagrams were in general use until the invention of Venn, and are

still doing service in some quarters.

The Venn diagrams were invented specifically to represent the relations

of logical classes as treated in the Boole-Schroder Algebra.
1 The principle

of these diagrams is that classes be represented by regions in such relation

to one another that all the possible logical relations of these classes can be

indicated in the same diagram. That is, the diagram initially leaves room

for any possible relation of the classes, and the actual or given relation can

then be specified by indicating that some particular region is null or is not-

null. Initially the diagram represents simply the "universe of discourse",

or 1. For one element, a, 1 a + -a.2 For two elements, a and b,

1 =
(a + -a) (6 + -6) = a b + a -b + -a b + -a -b

1 See Venn, Symbolic Logic, Chap. v. The first edition of this book appeared before

Schroder's Algebra der Logik, but Venn adopts the most important alteration of Boole's

original algebra the non-exclusive interpretation of a + b.

2 See above, Chap, u, propositions 4-8 and 5-92.
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For three elements, a, b, and c,

1 = (a + -a) (b + -6) (c + -c) = a a-bc+-abc + a-b-c

+ -a b -c + -a -b c + -a -b -c

Thus the "universe of discourse" for any number of elements, n, must

correspond to a diagram of 2" divisions, each representing a term in the

expansion of 1. If the area within the square in the diagram represent

-a -a-b

FIG. 2

the universe, and the area within the circle represent the element a, then

the remainder of the square will represent its negative, -a. If another

element, b, is to be introduced into the same universe, then b may be repre-

sented by another circle whose periphery cuts the first. The divisions,

(1) into a and -a, (2) into b and -b, will thus be cross-divisions in the uni-

verse. If a and b be classes, this arrangement represents all the possible

subclasses in the universe; a b, those things which are both a and b;

a -b, those things which are a but not b
; -ab, those things which are b

but not a; -a -b, those things which are neither a nor 6. The area which

represents the product, a b, will readily be located. We have enclosed

by a broken line, in figure 2, the area which represents a + b.

The negative of any entity is always the plane exclusive of that entity.

For example, -(a b + -a -6), in the above, will be the sum of the other

two divisions of the diagram, a-b + -a b.

If it be desired t introduce a third element, c, into the universe, it is

necessary to cut each one of the previous subdivisions into two one

part which shall be in c and one part which shall be outside c. This can be

be accomplished by introducing a third circle, thus

It is not really necessary to draw the square, 1, since the area given to the

figure, or the whole page, may as well be taken to represent the universe.

But when the square is omitted, it must be remembered that the unenclosed

13
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area outside all the lines of the figure is a subdivision of the universe

the entity -a, or -a -6, or -a -b -c, etc., according to the number of elements

involved.

-a-b-c

FIG. 3

If a fourth element, d, be introduced, it is no longer possible to repre-

sent each element by a circle, since a fourth circle could not be introduced

in figure 3 so as to cut each previous subdivision into two parts one part

in d and one part outside d. But this can be done with ellipses.
3 Each

FIG. 4

3 We have deformed the ellipses slightly and have indicated the two points of junction.

This helps somewhat in drawing the diagram, which is most easily done as follows: First,

draw the upright ellipse, a. Mark a point at the base of it and one on the left. Next,
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one of the subdivisions in figure 4 can be "named" by noting whether it

is in or outside of each of the ellipses in turn. Thus the area indicated by
6 is a b c -d, and the area indicated by 12 is -a -b c d. With a diagram of

four elements, it requires care, at first, to specify such regions as a + c,

a c + b d, b + -d. These can always be determined with certainty by

developing each term of the expression with reference to the missing ele-

ments.4 Thus

ac + b d = ac (b + -b) (d + -d) + b d (a + -a) (c + -c)

= abcd+abc-d + a-bcd+a-bc-d + ab -ab -c d

The terms of this sum, in the order given, are represented in figure 4 by the

divisions numbered 10, 6, 9, 5, 14, 11, 15. Hence ac + bd is the region

which combines these. With a little practice, one may identify such

regions without this tedious procedure. Such an area as b + -d is more

easily identified by inspection: it comprises 2, 3, 6, 7, 10, 11, 14, 15, and

1, 4, 5, 8.

Into this diagram for four elements, it is possible to introduce a fifth,

e, if we let e be the region between the broken lines in figure 5. The principle

of the
"
square diagram" (figure 6) is the same as Venn's: it represents all

FIG. 5

draw the horizontal ellipse, d, from one of these points to the other, so that the line con-

necting the two points is common to a and d. Then, draw ellipse b from and returning to

the base point, and ellipse c from and returning to the point on the left. If not done in

this way, the first attempts are likely to give twelve or fourteen subdivisions instead of

the required sixteen.
4 See Chap, u, 5-91.
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the subclasses in a universe of the specified number of elements. No

diagram is really convenient for more than four elements, but such are

5

-b
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sion, a c b, or any equation, a =
b, or inequation, a + b may be repre-

sented. Any such relation, or any set of such relations, can be completely

specified in these diagrams by taking advantage of the fact that they

-e

FIG. 8

can always be reduced either to the form of an expression = or to the

form of an expression =|= 0. Any inclusion, a c b, is equivalent to an equa-

tion, a -b = O.6 And every equation of the form a = b is equivalent to

one of the form a-b + -ab = O. 7 Thus any inclusion or equation can be

represented by some expression = 0. Similarly, any inequation of the

form a =f= b is equivalent to one of the form a-b + -ab =j= O. 8 Thus any
asserted relation whatever can be specified by indicating that some region

(continuous or discontinuous) either is null, {
=

0}, or is not-null, {4= 0}.

We can illustrate this, and at the same time indicate the manner in

which such diagrams are useful, by applying the method to a few syllogisms*

Given : All a is b,

and All b is c,

8 See Chap. 11, 4-9.
7 See Chap, n, 6-4.
8 See Chap, n, 7-1.

a cb,

b cc,

a -b = 0.

b -c = 0.
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We have here indicated (figure 9) that a -b the a which is not b is null

by striking it out (with horizontal lines). Similarly, we have indicated

that all b is c by striking out b -c (with vertical lines). Together, the two

operations have eliminated the whole of a -c, thus indicating that a -c = 0,

or "All aisc".

FIG. 9 FIG. 10

For purposes of comparison, we may derive this same conclusion by

algebraic processes.
9

Since a -b = = a -b (c + -c)
= a -b c + a -b -c,

and b -c = = b -c (a + -a) = a b -c + -a b -c,

therefore, a -b c + a -b -c + a b -c + -a b -c =
0,

and [5-72] a b -c + a -b -c = = a -c (b + -b) = a -c.

The equation in the third line, which combines the two premises, states

exactly the same facts which are represented in the diagram. The last

equation gives the conclusion, which results from eliminating the middle

term, b. Since a diagram will not perform an elimination, we must there

"look for" the conclusion.

One more illustration of this kind :

Given: All a is b, a-b = 0.

and No 6 is c, b c = 0.

The first premise is indicated (figure 10) by striking out the area a -b (with

horizontal lines), the second by striking out be (with vertical lines). To-

gether, these operations have struck out the whole of a c, giving the con-

clusion a c = 0, or "No a is c".

9 Throughout this chapter, references in square brackets give the number of the the-

orem in Chap, n by which any unobvious step in proof is taken.
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In a given diagram where all the possible classes or regions in the uni-

verse are initially represented, as they are by this method of diagramming,

we cannot presume that a given subdivision is null or is not-null. The

actual state of affairs may require that some regions be null, or that some

be not-null, or that some be null and others not. Consequently, even

when we have struck out the regions which are null, we cannot presume

that all the regions not struck out are not-null. This would be going beyond

the premises. All we can say, when we have struck out the null-regions,

is that, so far as the premises represented are concerned, any region not

struck out may be not-null. If, then, we wish to represent the fact that a

given region is definitely not-null that a given class has members, that

there is some expression =}= we must indicate this by some distinctive

mark in the diagram. For this purpose, it is convenient to use asterisks.

That a b =}= 0, may be indicated by an asterisk in the region a b. But here

a further difficulty arises. If the diagram involve more than two elements,

say, a, b, and c, the region a b will be divided into two parts, a b c and

a b -c. Now the inequation, a b =f= 0, does not tell us that a b c + 0, and

it does not tell us that a b -c =t= 0. It tells us only that ab c + ab -c 4= 0.

If, then, we wish to indicate a b =}= by an asterisk in the region a b, we

shall not be warranted in putting it either inside the circle c or outside c.

It belongs in one or the other or both that is all we know. Hence it is

convenient to indicate a b 4= by placing an asterisk in each of the divisions

of a 6 and connecting them by a broken line, to signify that at least one of

these regions is not-null (figure 11).

FIG. 11

We shall show later that a particular proposition is best interpreted by

an inequation; "Some a is b", the class ab has members, by a b 4= 0.
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Suppose, then, we have:

Given: All a is b, a-b = 0.

and Some a is c, a c =|= 0.

The conclusion, "Some b is c", is indicated (figure 12) by the fact that

one of the two connected asterisks must remain the whole region a b c

+ a-bc cannot be null. But one of them, in a -b c, is struck out in indi-

cating the other premise, a -b = 0. Thus a 6 c 4= 0, and hence a c 4= 0.

FIG. 12

The entire state of affairs in a universe of discourse may be represented

by striking out certain regions, indicating by asterisks that certain regions

are not-null, and remembering that any region which is neither struck

out nor occupied by an asterisk is in doubt. Also, the separate subdivisions

of a region occupied by connected asterisks are in doubt unless all but one

of these connected asterisks occupy regions which are struck out. And

any regions which are left in doubt by a given set of premises might, of

course, be made specifically null or not-null by an additional premise.

In complicated problems, the use of the diagram is often simpler and

more illuminating than the use of transformations, eliminations, and solu-

tions in the algebra. All the information to be derived from such opera-

tions, the diagram gives (for one who can "see" it) at a glance. Further

illustrations will be unnecessary here, since we shall give diagrams in con-

nection with the problems of the next section.

II. THE APPLICATION TO CLASSES

The interpretation of the algebra for logical classes has already been

explained.
10

a, b, c, etc., are to denote classes taken in extension; that is

10 Chap, n, pp. 121-22.
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to say, c signifies, not a class-concept, but the aggregate of all the objects

denoted by some class-concept. Thus if a =
b, the concept of the class a

may not be a synonym for the concept of the class b, but the classes a and b

must consist of the same members, have the same extension, a c b sig-

nifies that every member of the class a is also a member of the class 6.

The "product", a 6, denotes the class of those things which are both mem-

bers of a and members of 6. The "sum ", a + b, denotes the class of those

things which are either members of a or members of b (or members of both).

denotes the null-class, or class without members. Various concepts may
denote an empty class "immortal men", "feathered invertebrates",

"Julius Caesar's twin," etc. but all such terms have the same extension;

they denote nothing existent. Thus, since classes are taken in extension,

there is but one null-class, 0. Since it is a law of the algebra that, for

every x, ex, we must accept, in this connection, the convention that

the null-class is contained in every class. All the immortal men are mem-

bers of any class, since there are no such. 1 represents the class "every-

thing ", the "universe of discourse ", or simply the "universe ". This term

is pretty well understood. But it may be defined as follows: if an be any
member of the class a, and X represent the class-concept of the class x,

then the "universe of discourse" is the class of all the classes, x, such that

"an is an X" is either true or false. If "The fixed stars are blind" is

neither true nor false, then "fixed stars" and the class "blind" do not

belong to the same universe of discourse.

The negative of a, -a, is a class such that a and -a have no members in

common, and a and -a between them comprise everything in the universe

of discourse: a -a =
0, "Nothing is both a and not-a", and a + -a =

1,

"Everything is either a or -a".

Since inclusions, a c b, equations, a =
b, and inequations, a =(= b, repre-

sent relations which are asserted to hold between classes, they are capable

of being interpreted as logical propositions. And the operations of the

algebra transformations, eliminations, and solutions are capable of

interpretation as processes of reasoning. It would hardly be correct to

say that the operations of the algebra represent the processes of reasoning

from given premises to conclusions: they do indeed represent processes

of reasoning, but they seldom attain the result by just those operations

which are supposed to characterize the customary processes of thinking.

In fact, it is the greater generality of the symbolic operations which makes

their application to reasoning valuable.
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The representation of propositions by inclusions, equations, and in-

equations, and the interpretation of inclusions, equations, and inequations

in the algebra as propositions, offers certain difficulties, due to the fact

that the algebra represents relations of extension only, while ordinary logical

propositions quite frequently concern relations of intension. In discussing

the representation of the four typical propositions, we shall be obliged to

consider some of these problems of interpretation.

The universal affirmative, "All a is b", has been variously represented as,

(1) a = a b,

(2) acb,

(3) a = v b, where v is undetermined,

(4) a -b = 0.

All of these are equivalent.
11 The only possible doubt concerns (3) a = v b,

where v is undetermined. But its equivalence to the others may be demon-

strated as follows:

[7 1] a = v b is equivalent to a -(v b) + -a v b = 0.

But a--(v 6) + -a v b = a (-v + -b) + -avb = a -v + a -b + -a % b.

Hence [5-72] if a = v b, then a -b = 0.

And if a a b, then for some value of v (i. e., v = a), a = v b.

These equivalents of
"
All a is b

"
would most naturally be read :

(1) The a's are identical with those things which are a's and 6's both.

(2) a is contained in b: every member of a is also a member of b.

(3) The class a is identical with some (undetermined) portion of the

class 6.

(4) The class of those things which are members of a but not members

of b is null.

If we examine any one of these symbolic expressions of "All a is b",

we shall discover that not only may it hold when a = 0, but it always

holds when a = 0. = 0-6, cb, and 0--6 =
0, will be true for every

element b. And "0 = 06 for some value of v" is always true for v = 0.

Since a = means that a has no members, it is thus clear that the algebra

requires that "All a is b" be true whenever no members of a exist. The

actual use of language is ambiguous on this point. We should hardly say

that "All sea serpents have red wings, because there aren't any sea ser-

pents"; yet we understand the hero of the novel who asserts "Whoever

11 See Chap, n, 4-9.
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enters here must pass over my dead body". This hero does not mean to

assert that any one will enter the defended portal over his body: his desire

is that the class of those who enter shall be null. The difference of the

two cases is this: the concept "sea serpent" does not necessarily involve the

concept "having red wings", while the concept of "those who enter the

portal" as conceived by the hero does involve the concept of passing

over his body. We readily accept and understand the inclusion of an

empty class in some other when the concept of the one involves the concept

of the other when the relation is one of intension. But in this sense, an

empty class is not contained in any and every class, but in some only. In

order to understand this law of the algebra, "For every x, ex", we must

bear in mind two things: (1) that the algebra treats of relations in extension

only, and (2) that ordinary language frequently concerns relations of

intension, and is usually confined to relations of intension where a null

class is involved. The law does not accord with the ordinary use of language.

This is, however, no observation upon its truth, for it is a necessary law

of the relation of classes in extension. It is an immediate consequence of

the principle, "For every y, y c 1", that is, "All members of any class, y,

are also members of the class of all things". One cannot accept this last

without accepting, by implication, the principle that, in extension, the null-

class is contained in every class.

The interpretation of propositions in which no null-class is involved is

not subject to any corresponding difficulty, both because in such cases the

relations predicated are frequently thought of in extension and because

the relation of classes in extension is entirely analogous to their relation in

intension except where the class or the class 1 is involved. But the

interpretation of the algebra must, in all cases, be confined to extension.

In brief: "All a is b" must always be interpreted in the algebra as stating

a relation of classes in extension, not of class-concepts, and this requires

that, whenever a is an empty class, "All a is 6" should be true.

The proposition, "No a is b", is represented by a b = "Nothing is

both a and b", or "Those things which are members of a and of b both,

do not exist". Since "No a is 6" is equivalent to "All a is not-6", it may
also be represented by a -b = -b, a c -b, b c -a, or a = v -b, where v is

undetermined. In the case of this proposition, there is no discrepancy

between the algebra and the ordinary use of language.

The representation of particular propositions has been a problem to

symbolic logicians, partly because they have not clearly conceived the
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relations of classes and have tried to stretch the algebra to cover traditional

relations which hold in intension only. If "Some a is b" be so interpreted

that it is false when the class a has no members, then "Some a is b" will

not follow from "All a is 6", for "All a is 6" is true whenever a = 0. But

on the other hand, if "Some a is 6" be true when a =
0, we have two diffi-

culties: (1) this does not accord with ordinary usage, and (2) "Some a is b"

will not, in that case, contradict "No a is b". For whenever there are no

members of a (when a =
0), "No a is b" (a b = 0) will be true. Hence if

"Some a is 6" can be true when a = 0, then "Some a is b" and "No a is b"

can both be true at once. The solution of the difficulty lies in observing

that "Some a is 6" as a relation of extension requires that there be some a

that at least one member of the class a exist. Hence, when propositions

are interpreted in extension, "Some a is b" does not follow from "All a

is b", precisely because whenever a = 0, "All a is b" will be true. But

"Some a is b" does follow from "All a is b, and members of a exist".

To interpret properly "Some a is b", we need only remember that it

is the contradictory of "No a is b". Since "No a is 6" is interpreted by
a b = 0, "Some a is b" will be a b =(= 0, that is, "The class of things which

are members of a and of b both is not-null".

It is surprising what blunders have been committed in the representation

of particular propositions. "Some x is y" has been symbolized by x y =
v,

where v is undetermined, and by u x = v y, where u and v are undetermined.

Both of these are incorrect, and for the same reason : An "
undetermined

"

element may have the value or the value 1 or any other value. Conse-

quently, both these equations assert precisely nothing at all. They are

both of them true a priori, true of every x and y and in all cases. For

them to be significant, u and v must not admit the value 0. But in that

case they are equivalent to x y =|= 0, which is much simpler and obeys well-

defined laws which are consonant with its meaning.

Since we are to symbolize "All a is b" by a -b = 0, it is clear that its

contradictory, "Some a is not b", will be a -b =(= 0.

To sum up, then: the four typical propositions will be symbolized as

follows :

A. All a is b, a-b = 0.

E. No a is b, a b = 0.

I. Some a is b, a b 4= 0.

O. Some a is not b, a-b ^ 0.

Each of these four has various equivalents :

12

12 See Chap, u, 4-9 and 8-14.
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A. a -b = 0, a a b, -a+b =
1, -a + -b = -a, a c b, and -b c -a are

all equivalent.

E. a b = 0, a = a -b, -a + -b =
1, -a + b = -a, ac-b, and be -a are

all equivalent.

I. a b + 0, a 4= fl ~&> -a + -b =1= 1, and -a + b =t= -ct are all equivalent.

O. a -6 4= 0, a =1= a b, -a + b =f= 1, and -a + -b =f= -a are all equivalent.

The reader will easily translate these equivalent forms for himself.

With these symbolic representations of A, E, I and O, let us investigate

the relation of propositions traditionally referred to under the topics,

"The Square of Opposition", and "Immediate Inference".

That the traditional relation of the two pairs of contradictories holds,

is at once obvious. If a -b = is true, then a -b =1= is false; if a -b =

is false, then a -b =j= is true. Similarly for the pair, a b = and a b 4= 0.

The relation of contraries is defined: Two propositions such that both

may be false but both cannot be true are "contraries". This relation is

traditionally asserted to hold between A and E. It does not hold in ex-

tension: it fails to hold in the algebra precisely whenever the subject of

the two propositions is a null-class. If a = 0, then a -b = and a b = O.
13

That is to say, if no members of a exist, then from the point of view of

extension, "All a is b" and "No a is b" are both true. But if it be assumed

or stated that the class a has members (a =}= 0), then the relation holds.

a = a (b + -6) = a b + a -b.

Hence if a =f= 0, then a b + a -b =1= 0.

[8 17] If a b + a -6 4= and a -b =
0, then a b + 0. (1)

And if a b + a -b 4= and a b - 0, then a -b 4= 0. (2)

We may read the last two lines :

(1) If there are members of the class a and all a is b, then "No a is b"

is false.

(2) If there are members of the class a and no a is b, then "All a is b"

is false.

By tradition, the particular affirmative should follow from the universal

affirmative, the particular negative from the universal negative. As has

been pointed put, this relation fails to hold when a = 0. But it holds when-

ever a 4= 0. We can read a b 4= 0, in (1) above, as "Some a is b" instead

of "'No a is 6' is false", and a -b 4= 0, in (2), as "Some a is not 6" instead

of
" '

All a is b
'

is false ". We then have :

13 See Chap, n, 1-5.
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(1) If there are members of a, and all a is b, then some a is 6.

(2) If there are members of a, and no a is 6, then some a is not b.

"
Subcontraries

"
are propositions such that both cannot be false but

both may be true. Traditionally "Some a is 6" and "Some a is not b"

are subcontraries. But whenever a = 0, a b =f= and a -b =j= are both

false, and the relation fails to hold. When a =f= 0, it holds. Since a b =

is "'Some a is b' is false ", and a -b = is "'Some a is not b' is false", we

can read (1) and (2) above:

(1) If there are members of a, and "Some a is b" is false, then some a

is not b.

(2) If there are members of a and "Some a is not 6" is false, then some

a is 6.

To sum up, then: the traditional relations of the
"
square of opposition

"

hold in the algebra whenever the subject of the four propositions denotes a

class which has members. When the subject denotes a null-class, only

the relation of the contradictories holds. The two universal propositions

are, in that case, both true, and the two particular propositions both false.

The subject of immediate inference is not so well crystallized by tradi-

tion, and for the good reason that it runs against this very difficulty of the

class without members. For instance, the following principles would all

be accepted by some logicians:

"No a is b" gives "No 6 is a".

"No b is a" gives "All b is not-a".

"All b is not-a" gives "Some b is not-a".

"Some b is not-a" gives "Some not-a is b".

Hence "No a is 6" gives "Some not-a is b".

"No cows (a) are inflexed gasteropods (6)
"

implies "Some non-cows are

inflexed gasteropods": "No mathematician (a) has squared the circle (6)"

implies "Some non-mathematicians have squared the circle". These infer-

ences are invalid precisely because the class b inflexed gasteropods, suc-

cessful circle-squarers is an empty class; and because it was presumed

that "All b is not-a" gives "Some b is not-a". Those who consider the

algebraic treatment of null-classes to be arbitrary will do well to consider

the logical situation just outlined with some care. The inference of any

particular proposition from the corresponding universal requires the

assumption that either the class denoted -by the subject of the particular

proposition or the class denoted by its predicate ("not-6" regarded as the

predicate of "Some a is not b") is a class which has members.
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The "conversion
"
of the universal negative and of the particular affirma-

tive is validated by the law a b = b a.
" No a is b ", a b =

0, gives b a = 0,

"No b is a". And "Some a is b", a b + 0, gives b a 4= 0, "Some b is a".

Also, "Some a is not b", a -b =t= 0, gives -b a =j= 0, "Some not-6 is a".

The "converse" of the universal affirmative is simply the "converse"

of the corresponding particular, the inference of which from the universal

has already been discussed.

What are called "obverses" i. e., two equivalent propositions with

the same subject and such that the predicate of one is the negative of the

predicate of the other are merely alternative readings of the same equation,

or depend upon the law, -(-a) = a14
. Since xy = is

" No x is y ", a -b =
0,

which is "All a is b", is also "No a is not-6". And since a b = is equiva-

lent to a -(-b) = 0, "No a is b" is equivalent to "All a is not-6".

A convenient diagram for immediate inferences can be made by putting

S (subject) and P (predicate) in the center of the circles assigned to them,

-S between the two divisions of -S, and -P between its two constituent

divisions. The eight arrows indicate the various ways in which the dia-

Gtiyen Prop, Converse

FIG. 13

gram may be read, and thus suggest all the immediate inferences which

are valid. For example, the arrow marked "converse" indicates the two

terms which will appear in the converse of the given proposition and the

order in which they occur. In this diagram, we must specify the null and

"See Chap, n, 2-8.
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not-null regions indicated by the given proposition. And we may if we

wish add the qualification that the classes, S and P, have members.

If "No S is P", and S and P have members:

SP =
0,

5.

-S-P

FIG. 14

Reading the diagram of figure 14 in the various possible ways, we have:

1. No S is P, and 1. Some S is not P. (According as we read what

is indicated by the fact that S P is null, or what is indicated by the fact

that S -P is not-null.)

2. All S is not-P, and 2. Some S is not-P.

3. All P is not-S, and 3. Some P is not-S.

4. No P is S, and 4. Some P is not-S.

5. Wanting.

6. Some not-S is P.

7. Some not-P is S.

8. Wanting.
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Similarly, if "All S is P", and S and P have members:

S-P=.Q, S*Q, P +

S. 3.

A

.6*

FIG. 15

Reading from the diagram (figure 15), we have:

1. All S is P, and 1. Some S is P.

2. No S is not-P.

3. Wanting.

4. Some P is S.

5. Some not-S is not-P.

6. Wanting.

7. No not-P is S.

8. All not-P is not-S, and 8. Some not-P is not-S.

The whole subject of immediate inference is so simple as to be almost

trivial. Yet in the clearing of certain difficulties concerning null-classes

the algebra has done a real service here.

The algebraic processes which give the results of syllogistic reasoning

have already been illustrated. But in those examples we carried out the

14



194 A Survey of Symbolic Logic

operations at unnecessary lengths in order to illustrate their connection

with the diagrams. The premises of any syllogism give information which

concerns, altogether, three classes. The object is to draw a conclusion

which gives as much of this information as can be stated independently of

the "middle" term. This is exactly the kind of result which elimination

gives in the algebra. And elimination is very simple. The result of

eliminating x from A x + B -x = is A B = O. 15 Whenever the conclusion

of a syllogism is universal, it may be obtained by combining the premises

in a single equation one member of which is 0, and eliminating the "middle"

term. For example :

No x is y, x y = 0.

All z is x, z-x = 0.

Combining these, x y + z -x = 0.

Eliminating x, y z = 0.

Hence the valid conclusion is "No y is z", or "No z is y".

Any syllogism with a universal conclusion may also be symbolized so

that the conclusion follows from the law, "If a cb and b cc, then ace".

By this method, the laws, -(-a) = a and "If a cb, then -b c-a", are some-

times required also. 16 For example:

No x is y, x c -y.

All z is x, z ex.

Hence z c-y, or "No z is y", and y c-z, or "No y is z".

There is no need to treat further examples of syllogisms with universal

conclusions: they are all alike, as far as the algebra is concerned. Of course,

there are other ways of representing the premises and of getting the con-

clusion, but the above are the simplest.

When a syllogism has a particular premise, and therefore a particular

conclusion, the process is somewhat different. Here we have given one

equation {
=

}
and one inequation { =f= }

. WT

e proceed as follows :

(1) expand the inequation by introducing the third element; (2) multiply

the equation by the element not appearing in it; (3) make use of the prin-

ciple,
"
If a + b 4= and a = 0, then 6 4= 0", to obtain an inequation with

only one term in the literal member; (4) eliminate the element representing

the "middle term" from this inequation. Take, for example, A 1 1 in

15 See Chap, n, 7-4.

"See Chap, n, 2-8 and 3-1.
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the third figure:

All x is z, x -z = 0.

Some x is y, x y =f= 0.

x y = x y (z + -z)
= x y z + xy -z. Hence, x y z + xy -z 4= 0.

[1 5] Since x -z =
0, x y -z = 0.

[8 17] Since xy z + xy -z =f= and x y -x = 0, therefore x y z ={= 0.

Hence [8-221 yz + 0, or "Some y is z".

An exactly similar process gives the conclusion for every syllogism with a

particular premise.

We have omitted, so far, any consideration of syllogisms with both

premises universal and a particular conclusion those with "weakened"

conclusions, and A A I and E A in the third and fourth figures. These

are all invalid as general forms of reasoning. They involve the difficulty

which is now familiar: a universal does not give a particular without an

added assumption that some class has members. If we add to the premises

of such syllogisms the assumption that the class denoted by the middle

term is a class with members, this makes the conclusion valid. Take, for

example, A A I in the third figure :

All x is y, x-y = 0, and x has members, x =t= 0.

All x is z, x-z = 0.

Since x 4= 0, x y + x -y 4= 0, and since x -y = 0, x y 4= 0.

Hence x y z + x y -z 4= 0. (1)

Since x -z = 0, x y -z = 0. (2)

By (1) and (2), x y z + 0, and hence y z =(= 0, or "Some y is z".

Syllogisms of this form are generally considered valid because of a tacit

assumption that we are dealing with things which exist. In symbolic

reasoning, or any other which is rigorous, any such assumption must be

made explicit.

An alternative treatment of the syllogism is due to Mrs. Ladd-Franklin. 17

If we take the two premises of any syllogism and the contradictory of its

conclusion, we have what may be called an "inconsistent triad" three

propositions such that if any two of them be true, the third must be false.

For if the two premises be true, the conclusion must be true and its con-

17 See "On the Algebra of Logic", in Studies in Logic by members of Johns Hopkins

University, ed. by Peirce; also articles listed in Bibl. We do not follow Mrs. Franklin's

symbolism but give her theory in a modified form, due to Josiah Royce.
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tradictory false. And if the contradictory of the conclusion be true, i. e.,

if the conclusion be false, and either of the premises true, then the other

premise must be false. As a consequence, every inconsistent triad corre-

sponds to three valid syllogisms. Any two members of the triad give the

contradictory of the third as a conclusion. For example:

Inconsistent Triad

1. All x is y

2. Ally is z

3. Some x is not z.

Valid Syllogisms

1. All x is y 1. All x is y 2. All y is 2

2. All y is z 3. Some x is not z 3. Some x is not 2

.'. All x is z. .'. Some y is not z. .'. Some x is not y.

Omitting the cases in which two universal premises are supposed to

give a particular conclusion, since these really have three premises and

are not syllogisms, the inconsistent triad formed from any valid syllogism

will consist of two universals and one particular. For two universals will

give a universal conclusion, whose contradictory will be a particular; while

if one premise be particular, the conclusion will be particular, and its

contradictory wr
ill be the second universal. Representing universals and

particulars as we have done, this means that if we symbolize any incon-

sistent triad, we shall have two equations {
= 0} and one inequation { 4= 0}.

And the two universals
{
=

}
must give the contradictory of the particular

as a conclusion. This means that the contradictory of the particular

must be expressible as the elimination resultant of an equation of the form

ax + b-x = 0, because we have found all conclusions from two universals

to be thus obtainable. Hence the two universals of any inconsistent triad

will be of the form a x = and b -x respectively. The elimination

resultant of a x + b -x = is a b = 0, whose contradictory will be a b 4= 0.

Hence every inconsistent triad will have the form :

ax =
0, b-x = 0, a 6 4=

where a and b are any terms whatever positive or negative, and x is any

positive term.

The validity of any syllogism may be tested by expressing its proposi-

tions in the form suggested, contradicting its conclusion by changing it

from
{
= 0} to

{
=

0} or the reverse, and comparing the resulting triad
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with the above form. And the conclusion of any syllogism may be got by

considering how the triad must be completed to have the required form.

Thus, if the two premises are

No x is y, x y =

and All not-2 is y, -z -y =

the conclusion must be universal. The particular required to complete

the triad is x -z 4= 0. Hence the conclusion is x -z = 0, pr "All x is 2".

(Incidentally it may be remarked that this valid syllogism is in no one of

the Aristotelian moods.) Again, if the premises should be x y = and

y z = 0, no conclusion is possible, because these two cannot belong to the

same inconsistent triad.

We can, then, frame a single canon for all strictly valid syllogistic reason-

ing: The premises and the contradictory of the conclusion, expressed in

symbolic form, {
=

}
or

{ 4= } , must form a triad such that

(1) There are two universals
{
=

0} and one particular { 4= 0}.

(2) The two universals have a term in common, which is once positive

and once negative.

(3) The particular puts =(= the product of the coefficients of the com-

mon term in the two universals.

A few experiments with traditional syllogisms will make this matter clear

to the reader. The validity of this canon depends solely upon the nature

of the syllogism three terms, three propositions and upon the law of

elimination resultants, "If a x + b -x = 0, then a b = 0".

Reasoning which involves conditional propositions hypothetical argu-

ments, dilemmas, etc. may be treated by the same process, if we first

reduce them to syllogistic form. For example, we may translate "If A
is B, then C is D" by "All x is y", where x is the class of cases in which

A is B, and y the class of cases in which C is D i. e., "All cases in which A
is B are cases in which C is D". And we may translate "But A is B"

by
"
All z is x ", where 2 is the case or class of cases under discussion. Thus

the hypothetical argument: "If A is B, C is D. But A is B. Therefore,

C is D", is represented by the syllogism:

"All cases in which A is B are cases in which C is Z).

" But all the cases in question are cases in which A is B.

"Hence all the cases in question are cases in which C is D."

And all other arguments of this type are reducible to syllogisms in some

similar fashion. Thus the symbolic treatment of the syllogism extends to
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them also. But conditional reasoning is more easily and simply treated

by another interpretation of the algebra the interpretation for propositions.

The chief value of the algebra, as an instrument of reasoning, lies in

its liberating us from the limitation to syllogisms, hypothetical arguments,

dilemmas, and the other modes of traditional logic. Many who object to

the narrowness of formal logic still do not realize how arbitrary (from the

logical point of view) its limitations are. The reasons for the syllogism,

etc., are not logical but psychological. It may be worth while to exemplify

this fact. We shall offer two illustrations designed to show, each in a

different way, a wide range of logical possibilities undreamt of in formal

logic. The first of these turns upon the properties of a triadic relation

whose significance was first pointed out by Mr. A. B. Kempe.
18

It is characteristically human to think in terms of dyadic relations:

we habitually break up a triadic relation into a pair of dyads. In fact, so

ingrained is this disposition that some will be sure to object that a triadic

relation is a pair of dyads. It would be exactly as logical to maintain that

all dyadic relations are triads with a null member. Either statement is

correct enough : the difference is simply one of point of view psychological

preference. If there should be inhabitants of Mars whose logical sense

coincided with our own, so that any conclusion which seemed valid to us

would seem valid to them, and vice versa, but whose psychology otherwise

differed from ours, these Martians might have an equally fundamental

prejudice in favor of triadic relations. We can point out one such which

they might regard as the elementary relation of logic as we regard equality

or inclusion. In terms of this triadic relation, all their reasoning might

be carried out with complete success.

Let us symbolize by (ac/b), a -b c + -a b -c = 0. This relation may be

diagrammed as in figure 16, since a -b c + -a b -c = is equivalent to

a c c b c (a + c) . (Note that (ac/b) and (ca/b) are equivalent, since a -be

f -a b -c is symmetrical with respect to a and c.)

This relation (ac/b) represents precisely the information which we

habitually discard in drawing a syllogistic conclusion from two universal

premises. If all a is b and all b is c, we have

a -b = and b -c =

Hence a -b (c + -c) + (a + -a) b -c = 0,

18 See his paper "On the Relation of the Logical Theory of Classes and the Geometrical

Theory of Points,", Proc. London Math. Soc., xxi, 147-82. But the use we here make of

this relation is due to Josiah Royce. For a further discussion of Kempe's triadic relation,

see below, Chap, vi, Sect. iv.
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Or, a -b c + a -b -c + a b -c + -a b -c = 0.

[5 72] This equation is equivalent to the pair,

(1) a-b-c + ab -c = a -c (b + -b) = a -c = 0,

and (2) a -b c + -a b -c = 0.

(1) is the syllogistic conclusion, "All a is c"; (2) is (ac/6). Perhaps most

of us would feel that a syllogistic conclusion states all the information

given by the premises: the Martians might equally well feel that precisely

FIG. 16

what we overlook is the only thing worth mentioning. And yet with this

curious "illogical" prejudice, they would still be capable of understanding

and of getting for themselves any conclusion which a syllogism or a hypo-

thetical argument can give, and many others which are only very awkwardly

stateable in terms of our formal logic. Our relation, a cb, or "All a is b",

would be, in their terms, (06/a). (Ofe/a) is equivalent to

l-a-b + 0--ab = = a -b

Hence the syllogism in Barbara would be
"
(Ob/a) and (Oc/6), hence (Oc/a) ".

This would, in fact, be only a special case of a more general principle which

is one of those we may suppose the Martians would ordinarily rely upon

for inference: "If (xb/a) and (xc/b), then (xc/a)". That this general

principle holds, is proved as follows:

(xbja} is "X a -b + x -a b =

(xc/b) is -x b -c + x -b c =

These two together give:

-x a-b (c + -c) + x -a b (c + -c) + -x b -c (a + -a) + x -b c (a + -a) = 0,

or, -x a -b c + -x a -b -c + x -a b c + x -a b -c + -x a b -c + -x -a b -c

+ xa-b c + x-a-bc = 0.
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[5-72] This equation is equivalent to the pair,

(1) ~x a b -c + -x a -b -c + x -a b c + x -a -b c

= -x a-c (b + -b) + x -a c (b + -6)

= -x a -c + x -a c = 0.

(2) x -a b -c + -x -a b -c + x a -b c + -x a -b c

= -a b -c (x + -x) + a -b c (x + -x)

= -a b -c + a -b c =0.

(1) is (xc/a), of which our syllogistic conclusion is a special case; (2) is a

similar valid conclusion, though one which we never draw and have no

language to express.

Thus these Martians could deal with and understand our formal logic

by treating our dyads as triads with one member null. In somewhat

similar fashion, hypothetical propositions, the relation of equality, syllo-

gisms with a particular premise, dilemmas, etc., are all capable of state-

ment in terms of the relation (acjb). As a fact, this relation is much more

powerful than any dyad for purposes of reasoning. Anyone who will

trouble to study its properties will be convinced that the only sound reason

for not using it, instead of our dyads, is the psychological difficulty of

keeping in mind at once two triads with two members in common but

differently placed, and a third member which is different in the two. Our

attention-span is too small. But the operations of the algebra are inde-

pendent of such purely psychological limitations that is to say, a process

too complicated for us in any other form becomes sufficiently simple to be

clear in the algebra. The algebra has a generality and scope which
"
formal

"

logic cannot attain.

This illustration has indicated the possibility of entirely valid non-

traditional modes of reasoning. We shall now exemplify the fact that by

modes wilich are not so remote from familiar processes of reasoning, any

number of non-traditional conclusions can be drawn. For this purpose,

we make use of Poretsky's Law of Forms: 19

x = is equivalent to t = t -x + -t x

This law is evident enough: if x 0, then for any t, t-x = M =
t, and

-tx = -t-0 = 0, while t+ = t. Let us now take the syllogistic premises,

"All a is 6" and "All b is c", and see what sort of results can be derived

from them by this law.

All a is b, a-b = 0.

All b is c, b-c = 0.

19 See Chap, n, 7-15 and 7-16.
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Combining these, a-b + b -c = 0.

And [3-4-41] -(a-b + b-c} = -(a -&)-(& -c) = (-a + 6) (-6 + c)

= -a -6 + -a c + b c.

Let us make substitutions, in terms of a, b, and c, for the t of this formula.

a + b = (a + 6) (-a -6 + -a c + b c) + -a -6 (a-b + b -c)

= abc + -abc + bc = 6c

What is either a or 6 is identical with that which is both 6 and c. This is a

non-syllogistic conclusion from "All a is b and all b is c". Other such

conclusions may be got by similar substitutions in the formula.

a + c = (a + c) (-a -6 + -a c + b c) + -a -c (a-b + b -c)

= a 6 c + -a -& c + -a c + b c + -a b -c = a b c + -a (b + c) .

What is either a or c is identical with that which is a, b, and c, all three, or

is not a and either b or c.

-6 c = -b c (-a -b + -a c + b c) + (b + -c) (a-b + b -c)

= -a -b c + b -c + a -b -c = -a -b c + (a + 6) -c

That which is b but not c is identical with what is c but neither a nor b

or is either a or 6 but not c. The number of such conclusions to be got from

the premises, "All a is b" and "All b is c", is limited only by the number of

functions which can be formed with a, b, and c, and the limitation to sub-

stitutions in terms of these is, of course, arbitrary. By this method, the

number of conclusions which can be drawn from given premises is entirely

unlimited.

In concluding this discussion of the application of the algebra to the

logic of classes, we may give a few examples in which problems more involved

than those usually dealt with by formal logic are solved. The examples

chosen are mostly taken from other sources, and some of them, like the

first, are fairly historic.

Example I.20

A certain club has -the following rules: (a) The financial committee

shall be chosen from among the general committee; (6) No one shall be a

member both of the general and library committees unless he be also on

the financial committee; (c) No member of the library committee shall be

on the financial committee.

Simplify the rules.

10 See Venn, Symbolic Logic, ed. 2, p. 331.
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Let / = member of financial committee.

g= " "
general

1= " "
library

"
.

The premises then become:

(a) fcg, or f-g = 0.

, or -l = 0.

(c) / / = 0.

We can discover by diagramming whether there is redundancy here. In

figure 17, (a) is indicated by vertical lines, (6) by horizontal, (c) by oblique.

(a) and (c) both predicate the non-existence of / -g I. To simplify the

rules, unite (a), (6), and (c) in a single equation:

Hence, / -g + -f g I +/ / (g + -g)
= f -g + -f g I +f g I +f -g I

[5-91] = f-g+(-f+f)gl=f-g + gl = Q.

And [5-72] this is equivalent to the pair, f-g = and g I = 0.

Thus the simplified rules will be :

(') The financial committee shall be chosen from among the general

committee.

(6') No member of the general committee shall be on the library com-

mittee.
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Example 2.21

The members of a certain collection are classified in three ways as

a's or not, as 6's or not, and as c's or not. It is then found that the class b

is made up precisely of the a's which are not c's and the c's which are not a's.

How is the class c constituted?

Given : b = a -c + -a c. To solve for c.
22

b = b (c + -c)
= bc + b-c.

Hence, bc + b-c = a -c + -a c.

Hence [7-27] a -6 + -a 6 c c c a -b + -a b.

Or [2-2] c = a -6 + -a 6.

The c's comprise the a's which are not 6's and the 6's which are not a's.

Another solution of this problem would be given by reducing 6 = a -c

+ -ac to the form {
= 0} and using the diagram.

[7 1] 6 = a -c + -a c is equivalent to

6 -(a -c + -a c) + -6 (a -c + -a c) =0

And [6 4] -(a -c + -a c)
= a c + -a -c.

Hence, a 6 c + -a 6 -c + a -6 -c + -a -6 c = 0.

We observe here (figure 18) not only that c = a -6 + -a 6, but that the

FIG. 18

relation of a, 6, and c, stated by the premise is totally symmetrical, so that

we have also a = 6 -c + -6 c.

21 Adapted from one of Venn's, first printed in an article on "Boole's System of Logic",

Mind, i (1876), p. 487.
22 This proof will be intelligible if the reader understands thesolution formula referred to.
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Example 3.
M

If x that is not a is the same as 6, and a that is not x is the same as c,

what is x in terms of a, b, and c?

Given: 6 = -ax and c = a -.r. To solve for x.

[7-1] b = -ax is equivalent to

-(-a x) b + -a -b x = =
(a + -a:) b + -a -b x

= ab + b-x + -a-bx = Q (1)
And c = a -x is equivalent to

-(a -x)c + a -c -x = = (-a + x) c + a -c -x

Combining (1) and (2),

a b + -a c + (-a -b + c) x + (b + a -c) -x =

Hence [5-72] (-a -b + c) x + (b + a -c) -x =

[7-221] This gives the equation of condition,

(-a -b + c)(b + a-c) = b c =

[7-2] The solution of (4) is

(b + a-c) ex c-(-a -b + c)

And by (5),

-(-a -b + c)
= -(-a -b + c)

-c-x = Q (2)

(3)

(4)

(5)

Hence [2-2] x = b + a -c.

=
(a + 6) -c + 6 c

= a -c + 6 (c + -c) = b + a -c

FIG. 19

u See Lambert, Logische Abhandlungen, i, 14.
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This solution is verified by the diagram (figure 19) of equation (3), which

combines all the data. Lambert gives the solution as

x =
(a + 6) -c

This also is verified by the diagram.

Example 4. 24

What is the precise point at issue between two disputants, one of whom,

A, asserts that space should be defined as three-way spread having points

as elements, while the other, B, insists that space should be defined as

three-way spread, and admits that space has points as elements.

Let s = space,

t = three-way spread,

p = having points as elements.

A asserts : s = t p. B states : s = t and s c p.

s = t p is equivalent to

s--(tp)+-stp = Q = s-t + s-p + -stp = Q (1)

s c p is equivalent to s -p = (2)

And s = t is equivalent to s -t + -s t = (3)

(2) and (3) together are equivalent to

s -t + s -p + -s t = (4)

(1) represents ^4's assertion, and (4) represents 5's. The difference between

FIG. 20

the two is that between -s t p = and -st = 0. (See figure 20.)

-st = -s tp + -st-p
24 Quoted from Jevons by Mrs. Ladd-Franklin, loc. tit., p. 52.
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The difference is, then, that B asserts -st-p = 0, while A does not. It

would be easy to misinterpret this issue, -s t-p = is t-p cs, "Three-

way spread not having points as elements, is space ". But B cannot sig-

nificantly assert this, for he has denied the existence of any space not having

points as elements. Both assert s = tp. The real difference is this: B

definitely asserts that all three-way spread has points as elements and is

space, wrhile A has left open the possibility that there should be three-way

spread not having points as elements which should not be space.
*>

Example 5.

Amongst the objects in a small boy's pocket are some bits of metal

which he regards as useful. But all the bits of metal which are not heavy

enough to sink a fishline are bent. And he considers no bent object useful

unless it is either heavy enough to sink a fishline or is not metal. And the

only objects heavy enough to sink a fishline, which he regards as useful,

are bits of metal that are bent. Specifically what has he in his pocket which

he regards as useful?

Let x = bits of metal,

y =
objects he regards as useful,

z = things heavy enough to sink a fishline,

w = bent objects.

Symbolizing the propositions in the order stated, we have

xy*0
x-zc.w, or x -z -w =

y w c (z + -x), or xy-zw =

zy c.x w, or -x y z + y z -w =

Expanding the inequation with reference to z and w,

xyzw + xyz-w + xy-zw + xy-z-w 4=

Combining the equations,

x -z -w (y + -y~) + x y -z w + -x y z (w + w} + y z-w (x + -x) =

or xy -z-w + x-y -z-w + x y -zw + -x y zw + -x y z-w + x y z-w =

All the terms of the inequation appear also in this equation, with the

exception of x y z w. Hence, by 8-17, x y z w 4= 0. The small boy has
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some bent bits of metal heavy enough to sink a fishline, which he considers

useful. This appears in the diagram (figure 21) by the fact that while

FIG. 21

some subdivision of x y must be not-null, all of these but x y z w is null.

It appears also that anything else he may have which he considers useful

may or may not be bent but is not metal.

Example 6.25

The annelida consist of all invertebrate animals having red blood in a

double system of circulating vessels. And all annelida are soft-bodied,

and either naked or enclosed in a tube. Suppose we wish to obtain the

relation in which soft-bodied animals enclosed in tubes are placed (by virtue

of the premises) with respect to the possession of red blood, of an external

covering, and of a vertebral column.

Let a = annelida,

s = soft-bodied animals,

n = naked,

t = enclosed in a tube,

i = invertebrate,

r = having red blood, etc.

Given: a = ir and acs (n + t), with the implied condition, n t = 0. To

eliminate a and find an expression for s t.

25 See Boole, Laws of Thought, pp. 144-46.
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a = iris equivalent to

-(i r) a + -a i r = a -i + a -r -a i r = (1)

a cs (n + 2) is equivalent to a--(s n + s t) =0.

-(* n + s f)
= -(s n) --(s i)

= (-s + -n)(-s + -t)
= -s + -n -t.

Hence, a -s + a -n -t = (2)

Combining (1) and (2) and n t = 0,

a ~i + a -r + -a i r + a -s + a -n ~t + n t = (3)

Eliminating a, by 7*4,

(-i + -r + -s + -n -t + n t) (i r + n t)
= nt + ir -s + ir -n-t =

The solution of this equation for s is
26 ires.

And its solution for t is i r -n c t c -n.

Hence [5-3] ir -nc.sic.-n, t>r st = ir-n + u--n, where u is un-

determined.

The soft-bodied animals enclosed in a tube consist of the invertebrates

-i

26 See Chap, n, Sect, iv, "Symmetrical and Unsymmetrical Constituents of an Equa-
tion ".
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which have red blood in a double system of circulating vessels and a body

covering, together with an undetermined additional class (which may be

null) of other animals which have a body covering. This solution may be

verified by the diagram of equation (3) (figure 22). In this diagram, s t is

the square formed by the two crossed rectangles. The lower half of this

inner square exhibits the solution. Note that the qualification, -n, in

ir -nest, is necessary. In the top row is a single undeleted area repre-

senting a portion of i r (n) which is not contained in s t.

Example 7.27

Demonstrate that from the premises "All a is either b or c", and

"All c is a", no conclusion can be drawn which involves only two of the

classes, a, b, and c.

Given : a c (b + c) and c c a.

To prove that the elimination of any one element gives a result which

is either indeterminate or contained in one or other of the premises.

a c (b + c) is equivalent to a-b -c = 0.

And c c a is equivalent to -a c = 0.

Combining these, a -b -c + -a c = 0.

Eliminating a [7-4], (-b -c) c =
0, which is the identity, = 0.

Eliminating c, (a -b) -a = 0, or = 0.

Eliminating b, (-a c + a -c) -a c = -ac = 0, which is the second

premise.

Example 8.

A set of balls are all of them spotted with one or more of the colors, red,

green, and blue, and are numbered. And all the balls spotted with red are

also spotted with blue. All the odd-numbered blue balls, and all the even

numbered balls which are not both red and green, are on the table. De-

scribe the balls not on the table.

Let e = even-numbered, -e = odd-numbered,

r = spotted with red,

b = spotted with blue,

g
= spotted with green,

t = balls on the table.

Given: (1) -r-b-g = 0.

27 See De Morgan, Formal Logic, p. 123.

15
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(2) r-6 = 0.

(3) [-eb + e -(r g)] ct, or (-e b + e -r + e -g) -t = 0.

To find an expression, x, such that -I c x, or -t x = -t. Such an expression

should be as brief as possible. Consequently we must develop -t with

respect to e, r, b, and g, and eliminate all null terms. (An alternative

method would be to solve for -t, but the procedure suggested is briefer.)

-t = -t(e + -e) (r + -r} (b + -b} (g + -g)

= -t(erbg+erb-g+er-bg + e-rbg + -erbg + er-b-g

+ e -r b -g + -e r b -g + e -r -b g + -e -r b g + -e r -b g

+ e-r -b -g + -e r -b -g + -e-rb-g + -e -r -b g + -e -r -b -g) (4)

From (1), (2), and (3),

-t (-eb + e-r + e-g + r-b + -r -b -g)
=

(5)

Eliminating from (4) terms involved in (5),

-t -t (e rb g + -e-r -b g), or -tc(erbg + -e-r -b g)

All the balls not on the table are even-numbered and spotted with all three

colors or odd-numbered and spotted with green only.
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In the diagram (figure 23), equation (1) is indicated by vertical lines,

(2) by oblique, (3) by horizontal.

Example 9.28

Suppose that an analysis of the properties of a particular class of sub-

stances has led to the following general conclusions:

1st. That wherever the properties a and b are combined, either the

property c, or the property d, is present also; but they are not jointly present.

2d. That wherever the properties b and c are combined, the properties

a and d are either both present with them, or both absent.

3d. That wherever the properties a and b are both absent, the proper-

ties -c and d are both absent also; and vice versa, where the properties

c and d are both absent, a and b are both absent also.

Let it then be required from the above to determine what may be con-

cluded in any particular instance from the presence of the property a with

respect to the presence or absence of the properties b and c, paying no

regard to the property d.

Given: (1) a b c (c -d + -c d).

(2) be c (ad + -a-d).

(3) -a -b = -c -d.

To eliminate d and solve for a.

(1) is equivalent to a b--(c -d + -c d) = 0.

(2) is equivalent to b c--(a d + -a -d) = 0.

But [6 4] -(c -d + -c d)
= c d + -c -d,

and -(a d + -a -d) = -a d+ a -d.

Hence we have, a b (c d + -c -d} =abcd+ab-c-d = 0. (4)

and b c (-a d+ a -d) = -abcd+abc-d = Q (5)

(3) is equivalent to

-a -b (c + d) + (a + 6) -c -d

= -a -b c + -a -6 d + a -c -d + b -c -d = (6)

Combining (4), (5), and (6), and giving the result the form of a

function of d,

(-a -b c + -a -b + a b c + -a b c) d

+ (-a -b c + a -c + b -c + a b -c + a b c) -d =

28 See Boole, Laws of Thought, pp. 118-20. For further problems, see Mrs. Ladd-

Franklin, loc. tit., pp. 51-61, Venn, Symbolic Logic, Chap, xm, and Schroder, Algebra der

Logik: Vol. i, Dreizehnte Vorlesung.



212 A Survey of Symbolic Logic

Or, simplifying, by 5-4 and 5-91,

(-a -b + b c) d + (-a -b c + a-c + b-c + ab c) -d =

Hence [7 4] eliminating d,

(-a -l + 5 c) (-a -b c + a-c + b-c + ab c)
= -a-b c + ab c =

Solving this equation for a [7-2], -be c a c (-6 + -c).

The property a is always present when c is present and b absent, and when-

ever a is present, either b is absent or c is absent.

The diagram (figure 24) combines equations (4), (5), and (6).

FIG. 24

As Boole correctly claimed, the most powerful application of this algebra

is to problems of probability. But for this, additional laws which do not

belong to the system are, of course, required. Hence we omit it. Some-

thing of what the algebra will do toward the solution of such problems will

be evident if the reader imagine our Example 8 as giving numerically the

proportion of balls spotted with red, with blue, and with green, and the

quaesitum to be "If a ball not on the table be chosen at random, what is

the probability that it will be spotted with all three colors? that it will be

spotted with green?" The algebra alone, without any additional laws,

answers the last question. As the reader will observe from the solution,

all the balls not on the table are spotted with green.
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III. THE APPLICATION TO PROPOSITIONS

If, in our postulates, a, b, c, etc., represent propositions, and the "prod-

uct", a b, represent the proposition which asserts a and b both, then we

have another interpretation of the algebra. Since a+b is the negative of

-a-b, a + b will represent "It is false that a and b are both false", or

"At least one of the two, a and b, is true". It has been customary to read

a + b, "Either a or b", or "Either a is true or 6 is true". But this is some-

what misleading, since "Either ... or ..." frequently denotes, in

ordinary use, a relation which is to be understood in intension, while this

algebra is incapable of representing relations of intension. For instance,

we should hardly affirm "Either parallels meet at finite intervals or all

men are mortal". We might well say that the "Either . . . or . . ."

relation here predicated fails to hold because the two propositions are

irrelevant. But at least one of the two, "Parallels meet at finite intervals"

and "All men are mortal", is a true proposition. The relation denoted

by + in the algebra holds between them. Hence, if we render a + b by

"Either a or 6", we must bear in mind that no necessary connection of a

and b, no relation of "relevance" or "logical import", is intended.

The negative of a, -a, will be its contradictory, or the proposition "a is

false". It might be thought that -a should symbolize the "contrary"

of a as well, that if a be "All men are mortal ", then "No men are mortal"

should be -a. But if the contrary as well as the contradictory be denoted

by -a, then -a will be an ambiguous function of a, whereas the algebra

requires that -a be unique.
29

The interpretation of and 1 is most easily made clear by considering

the connection between the interpretation of the algebra for propositions

and its interpretation for classes. The propositional sign, a, may equally

well be taken to represent the class of cases in which the proposition a is

true, a b will then represent the class of cases in which a and 6 are both

true; -a, the class of cases in which a is false, and so on. The "universe", 1,

will be the class of all cases, or all "actual" cases, or the universe of facts.

Thus a = 1 represents "The -cases in which a is true are all cases", or

"a is true in point of fact", or simply "a is true". Similarly is the class

of no cases, and a = will mean "a is true in no case", or "a is false".

It might well be asked: May not a, b, c, etc., represent statements which

are sometimes true and sometimes false, such as "Today is Monday"
or "The die shows an ace"? May not a symbolize the cases in which a is

29 See Chap. 11, 3-3.
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true, and these be not all but only some of the cases? And should not

a = 1 be read "a is always true", as distinguished from the less com-

prehensive statement, "a is true"? The answer is that the interpretation

thus suggested can be made and that Boole actually made it in his chapters

on "Secondary Propositions".
30 But symbolic logicians have come to

distinguish between assertions which are sometimes true and sometimes

false and propositions. In the sense in which "Today is Monday" is

sometimes true and sometimes false, it is called a propositional function

and not a proposition. There are two principal objections to interpreting

the Boole-Schroder Algebra as a logic of propositional functions. In the

first place, the logic of propositional functions is much more complex than

this algebra, and in the second place, it is much more useful to restrict the

algebra to propositions by the additional law "If a =f= 0, then a =
1, and

if a =f= lj then a = 0", and avoid any confusion of propositions with asser-

tions which are sometimes true and sometimes false. In the next chapter,

we shall investigate the consequences of this law, which holds for proposi-

tions but not for classes or for propositional functions. We need not pre-

sume this law at present: the Boole-Schroder Algebra, exactly as presented

in the last chapter, is applicable throughout to propositions. But wre shall

remember that a proposition is either always true or never true : if a proposi-

tion is true at all, it is always true. Hence in the interpretation of the

algebra for propositions, a = 1 means "a is true" or "a is always true"

indifferently the two are synonymous. And a = means either "a is

false" or "a is always false".

The relation a c 6, since it is equivalent to a -b = 0, may be read
"
It

is false that 'a is true and b is false'", or loosely, "If a is true, then b is

true ". But a c b, like a + b, is here a relation which does not signify

"relevance" or a connection of "logical import". Suppose a = "2 + 2

= 4" and b = "Christmas is a holiday". We should hardly say "If

2 + 2 = 4, then Christmas is a holiday". Yet it is false that "2 + 2 = 4

and Christmas is not a holiday": in this example a -b = is true, and

hence acb will hold. This relation, a c b, is called "material implication";

it is a relation of extension, whereas we most frequently interpret "implies"

as a relation of intension. But a c b has one most important property in

common with our usual meaning of "a implies b" when a cb is true, the

case in which a is true but b is false does not occur. If a c b holds, and a is

true, then b will not be false, though it may be irrelevant. Thus "material

30 Laws of Thought, Chaps, xi-xiv.
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implication" is a relation which covers more than the "implies" of ordinary

logic: a cb holds whenever the usual "a implies b" holds; it also holds in

some cases in which "a implies b" does not hold.31

The application of the algebra to propositions is so simple, and so

resembles its application to classes, that a comparatively few illustrations

will suffice. We give some from the elementary logic of conditional propo-

sitions, and conclude with one taken from Boole.

Example 1.

If A is B, C is D. (1)

And A is B. (2)

Let x = A is B; y = C is Z).

The two premises then are :

(1) xcy, or [4-9] -x + y = 1.

(2) x =
1, or -x = 0.

[5-7] Since -x + y = 1 and -x =
0, y = 1.

y = I is the conclusion
" C is D ".

Example 2.

(1) If A is B, C is Z).

(2) But C is not D.

Let x = A is B; y = C is Z).

(1) x cy, or -x + y = 1.

(2) y = Q.

[5-7] Since -x + y = 1 and y = 0, -x = 1.

-x = 1 is the conclusion "A is 5 is false", or "A is not 5".

Example 3.

(1) If ^ is B, C is Z); and (2) if EhF,G is H.

(3) But either ^4 is B or C is D.

Let w = ^4 is B; x = C is D; y = E is F; z = G is H.

(1) wcx, or [4-9] wx = w.

(2) i/cz, or yz =
y.

(3) W + T/
= 1.

31 "Material implication" is discussed more at length in Chap, iv, Sect, i, and Chap,

v, Sect. v.
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Since iv + y =
1, and wx = w and yz = y,wx + yz = l.

Hence [4-5] w x + -w x + y z + -y z 1 + -w x + -y z = 1 .

Hence x (w + -w) + z (y + -y) = x + z = 1.

x+z = 1 is the conclusion "Either C is D or G is H". This dilemma

may be diagrammed if we put our equations in the equivalent forms

(1) w -x = 0, (2) y -z = 0, (3) -w -y = 0. In figure 25, w -x is struck

FIG. 25

out with horizontal lines, y -z with vertical, -w -y with oblique , That

everything which remains is either x or z is evident.

Example 4.

(1) Either A is B or C is not D.

(2) Either C is D or E is F.

(3) Either A is B or E is not F.

Let z = yl is ; y = C is D; z = E is F.

(1) ar + -y = 1.

(2) y + z =
1, or -y -z = 0.

(3) z + -z =
1, or -xz = 0.

By (1), x + -y(z + -z) = x + -y z + -y -z = 1.

Hence by (2), x + -y z = 1 = x + -y z (x + -x} x + x -y z + -x -y z.

And by (3), -x -y z = 0. Hence x + x-y z = x 1.

Thus these three premises give the categorical conclusion "A is B", indi-

cating the fact that the traditional modes of conditional syllogism are by
no means exhaustive.
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Example 5.32

Assume the premises:

1. If matter is a necessary being, either the property of gravitation is

necessarily present, or it is necessarily absent.

2. If gravitation is necessarily absent, and the world is not subject to

any presiding intelligence, motion does not exist.

3. If gravitation is necessarily present, a vacuum is necessary.

4. If a vacuum is necessary, matter is not a necessary being.

5. If matter is a necessary being, the world is not subject to a presiding

intelligence.

Let x = Matter is a necessary being.

y = Gravitation is necessarily present.

z = The world is not subject to a presiding intelligence.

w = Motion exists.

t = Gravitation is necessarily absent.

v = A vacuum is necessary.
'

The premises then are :

(1) x c (y + t}, or x -y -t = 0.

^2) t z c -w, or t z w = 0.

(3) y cv, or y -v = 0.

(4) v c -x, or v x = 0.

(5) x c z, or x -z = 0.

And since gravitation cannot be both present and absent,

(6) y t = 0.

Combining these equations :

x -y -t + t z iv + y -v + v x + x -z + y t = (7)

From these premises, let it be required, first, to discover any conection

between x, "Matter is a necessary being", and y, "Gravitation is necessarily

present". For this purpose, it is sufficient to discover whether any one

of the four, x y 0, x -y = 0, -x y = 0, or -x -y = 0, since these are

the relations which state any implication which holds between x, or -x,

and y, or -y. This can always be done by collecting the coefficients of

x y, x -y, -x y, and -x -y, in the comprehensive expression of the data,

such as equation (7), and finding which of them, if any, reduce to 1. But

32 See Boole, Laws of Thought, Chap. xiv. The premises assumed are supposed to be

borrowed from Clarke's metaphysics.
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sometimes, as in the present case, this lengthy procedure is not necessary,

because the inspection of the equation representing the data readily reveals

such a relation.

From. (7), [5-72] vx + -vy = 0.

Hence [1-5] V x y + -v x y =
(v + -v) xy = xy = Q, orxc -y, y c -x.

If matter is a necessary being, then gravitation is not necessarily present;

if gravitation is necessarily present, matter is not a necessary being.

Next, let any connection between x and w be required. Here no such

relation is easily to be discovered by inspection. Remembering that if

a = 0, then a b = and a -b =
;

From (7), (-y -t+tz + y-v + i) + -z + yt)wx
+ (tz + y -v + y t) w -x

+ (-y -t + y -v + v + -z + y f) -w x

+ (y-v + yf) -w -x =
(8)

Here the coefficient of w x reduces to 1, for [5-85],

y -v + v = y + v, and t z + -z = t + -z

and hence the coefficient is -y -t + y + t + v + -z + y t.

But [5-96] (-y-t + y +
t) + v + -z + yt = l+v + -z + yt = 1.

Hence w x =
0, or w c -x, x c -w.

-IV

--y- --{

FIG. 26

-v

-t
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None of the other coefficients in (8) reduces to 1. Hence the conclusion

which connects x and w is: "If motion exists, matter is not a necessary

being; if matter is a necessary being, motion does not exist".

Further conclusions, relating other terms, might be derived from the

same premises. All such conclusions are readily discoverable in the dia-

gram of equation (7). In fact, the diagram is more convenient for such

problems than the transformation of equations in the algebra.

Another method for discovering the implications involved in given data

is to state the data entirely in terms of the relation c
, and, remembering

that "If acb and bcc, then ace", as well as "acb is equivalent to

-b c-a", to seek directly any connection thus revealed between the propo-

sitions which are in question. Although by this method it is possible to

overlook a connection which exists, the danger is relatively small.

IV. THE APPLICATION TO RELATIONS

The application of the algebra to relations is relatively unimportant,

because the logic of relations is immensely more complex than the Boole-

Schroder Algebra, and requires more extensive treatment in order to be of

service. We shall, consequently, confine our discussion simply to the

explanation of this interpretation of the algebra.

A relation, taken in extension, is the class of all couples, triads, or tetrads,

etc., which have the property of being so related. That is, the relation

"father of" is the class of all those couples, (x;y], such that x is father

of y: the dyadic relation R is the class of all couples (x; y) such that x has

the relation R to y, x R y. The extension of a relation is the class of things

which have the relation. We must distinguish between the class of couples

(x; y) and the class of couples (y; x), since not all relations are symmetrical

and x R y commonly differs from y R x. Since the properties of relations,

so far as the laws of this algebra apply to them, are the same whether they

are dyadic, triadic, or tetradic, etc., the discussion of dyadic relations wr
ill be

sufficient.

The "product ", R x S, or R S, will represent the class of all those couples

(x; y} such that x R y and x S y are both true. The "sum ", R + S, will be

the class of all couples (x ; y} such that at least one of the two, x R y and

x S y, holds. The negative of R, -R, will be the class of couples (x; y) for

which x R y is false.

The null-relation, 0, will be the null-class of couples. If the class of

couples (t; u) for which t R u is true, is a class with no members, and the
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class of couples (v; w) for which v S w is true is also a class with no members,

then R and S have the same extension. It is this extension which repre-

sents. Thus R =
signifies that there are no two things, i and u, such

that i R u is true that nothing has the relation R to anything. Similarly,

the universal-relation, 1, is the class of all couples (in the universe of dis-

course).

The inclusion, RcS, represents the assertion that every couple (x; y)

for which x R y is true is also such that x S y is true; or, to put it otherwise,

that the class of couples (x ; y) for which x R y is true is included in the

class of couples (u; t>) for which u S v is true. Perhaps the most satisfactory

reading of R cS is "The presence of the relation R implies the presence of

the relation S". R = S, being equivalent to the pair, RcS and ScR,

signifies that R and S have the same extension that the class of couples

(x; y) for which x Ry is true is identically the class of couples (u; v) for

which u S v is true.

It is obvious that all the postulates, and hence all the propositions, of

the Boole-Schroder Algebra hold for relations, so interpreted.

1-1 If R and <S are relations (that is, if there is a class of couples (x; y)

such that x Ry is true, and a class of couples (u; v) such that u S r. is true),

then R xS is a relation (that is, there is a class of couples (w; z) such that

w R z and w S z are both true) . If R and S be such that there is no couple

(w; z) for which w R z and w S z both hold, then R x S is the null-relation,

i. e., the null-class of couples.

1-2 The class of couples (x; y) for which x R y and x R y both hold is

simply the class of couples for which x R y holds.

1 3 The class of couples denoted by R x S is the same as that denoted

by S xR namely, the class of couples (x; y) such that x Ry and x S y

are both true.

1-4 The class of couples (x; y) for which xRy, x S y, and x Ty all

hold is identically the same in whatever order the relations be combined

i. e., Rx(SxT) = (RxS) xT,

1-5 R xO = i. e., the product of the class of couples for which x R y

holds and the null-class of couples is the null-class of couples.

1-6 For every relation, R, there is a relation -R, the class of couples

for which x R y is false, and -R is such that :

1-61 If the relation Rx-S is null (that is, if there is no couple such

that x Ry is true and x S y is false), then R x S = R (that is, the class of

couples for which x Ry is true is identically the class of couples for which

x Ry and x S y are both true) ;
and
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1-62 If R xS = R and R x-S = R, then R = i. e., if the class of

couples for which x R y and x S y are both true is identically the class of

couples for which x R y is true, and if also the class of couples for which

x R y is true and x S y is false is identically the class of couples for which

x R y is true, then the class of couples for which x R y is true is null.

1-71= -0 i. e., the universal class of couples is the negative of the

null-class of couples, within the universe of discourse of couples.

1-8 R + S = -(-Rx-S) i. e., the class of couples (x;y) such that

at least one of the two, x R y and x S y, is true is the negative of the class

of couples for which x R y and x S y are both false.

1-9 RxS = Ris equivalent to R c S i. e., if the class of couples (x; y)

for which x R y and x S y are both true is identical with the class of couples

for which x Ry is true, then the presence of R implies the presence of *S;

and if the presence of R implies the presence of S, then the class of couples

(x ; y} for which x R y is true is identical with the class of couples for which

x Ry and x S y are both true.33

33 For a further discussion of the logic of relations, see Chap, iv, Sect. v.



CHAPTER IV

SYSTEMS BASED ON MATERIAL IMPLICATION

We are concerned, in the present chapter, with the "calculus of propo-

sitions" or calculus of "material implication", and with its extension to

prepositional functions. We shall discover here two distinct modes of

procedure, and it is part of our purpose to set these two methods side by side.

The first procedure takes the Boole-Schroder Algebra as its foundation,

interprets the elements of this system as propositions, and adds to it a

postulate which holds for propositions but not for logical classes. The

result is what has been called the "Two-Valued Algebra", because the

additional postulate results in the law: For any x, if x =f= 1, then x = 0,

and if x =f= 0, then x = 1. This Two-Valued Algebra is one form of the

calculus of propositions. The extension of the Two-Valued Algebra to

propositions of the form <pxn ,
where xn is an individual member of a class

composed of Xi, x?, x 3 , etc., gives the calculus of prepositional functions.

II and 2 functions have a special significance in this system, and the relation

of "formal implication", Hx (<f>x c\f/x~), is particularly important. In terms

of it, the logical properties of relations including the properties treated

in the last chapter but going beyond them can be established. This is

the type of procedure used by Peirce and Schroder.

The second method that of Principia Mathematica begins with the

calculus of propositions, or calculus of material implication, in a form which

is simpler and otherwise superior to the Two-Valued Algebra, then pro-

ceeds from this to the calculus of prepositional functions and formal impli-

cation, and upon this last bases not only the treatment of relations but also

the "calculus of classes".

It is especially important for the comprehension of the whole subject

of symbolic logic that the agreement in results and the difference of method,

of these two procedures, should be understood. Too often they appear to

the student simply unrelated.

I. THE TWO-VALUED ALGEBRA 1

If the elements a, b, ... p, q, etc., represent propositions, and a x b or

a b represent the joint assertion of a and b, then the assumptions of the

1 See Schroder, Algebra der Logik: n, especially Fiinfzehnte Vorlesung. An excellent

summary is contained in Schroder's Abriss (ed. M tiller), Teil u.

222
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Boole-Schroder Algebra will all be found to hold for propositions, as was

explained in the last chapter.
2 As was there made clear, p = will repre-

sent "p is false", and p =
1, "p is true". Since and 1 are unique, it

follows that any two propositions, p and q, such that p = and q
= 0,

or such that p = 1 and q =
1, are also such that p q. p =

q, in the

algebra, represents a relation of extension or "truth value", not an equiva-

lence of content or meaning.

-p symbolizes the contradictory or denial of p.

The meaning of p + q is readily determined from its definition,

p + q = -(-p -q)

p + q is the denial of "p is false and q is false", or it is the proposition

"At least one of the two, p and q, is true", p + q may be read loosely,

"Either p is true or q is true". The possibility that both p and q should

be true is not excluded.

p c q is equivalent to p q
= p and to p -q = 0. p c q is the relation of

material implication. We shall consider its properties with care later in

the section. For the present, we may note simply that p c q means exactly

"It is false that p is true and q false". It may be read "If p is true, q is

true", or
"
p (materially) implies q".

With the interpretations here given, all the postulates of the Boole-

Schroder Algebra are true for propositions. Hence all the theorems will

also be true for propositions. But there is an additional law which holds

for propositions:

P = (P =
1)

"The proposition, p, is equivalent to 'p is true'". It follows immediately

from this that

-p = (-p =
1)

=
(p

=
0)

11

-p is equivalent to 'p is false'". It also follows that -p = -(p =
1),

and hence

-(p =
1)

= (p = 0), and -(p =
0) =

(p
=

1)

'"p = 1 is false
'

is equivalent to p = 0", and '"p = is false
'

is equivalent

to p = 1". Thus the calculus of propositions is a two-valued algebra:

every proposition is either = or =
1, either true or false. We may, then,

proceed as follows: All the propositions of the Boole-Schroder Algebra
2
However, many of the theorems, especially those concerning functions, eliminations,

and solutions, are of little or no importance in the calculus of propositions.
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which were given in Chapter II may be regarded as already established in

the Two-Valued Algebra. We may, then, simply add another division of

propositions the additional postulate of the Two-Valued Algebra and the

additional theorems which result from it. Since the last division of the-

orems in Chapter II was numbered 8-, we shall number the theorems of

this section 9 .

The additional postulate is:

9-01 For every proposition p, p = (p = 1).

And for convenience we add the convention of notation :

9-02 -(p =
q) is equivalent to p 4= <?

As a consequence of 9-01, we shall have such expressions as -(p =
1) and

-(p =
0). 9-02 enables us to use the more familiar notation, p 4= 1 and

p*0.
It follows immediately from 9-01 that the Two-Valued Algebra cannot

be viewed as a wholly abstract mathematical system. For whatever p
and 1 may be, p = I is a proposition. Hence the postulate asserts that

any element, p, in the system, is a proposition. But even a necessary

interpretation may be abstracted from in one important sense no step in

proof need be allowed to depend upon this interpretation. This is the

procedure we shall follow, though it is not the usual one. It will appear

shortly that the validity of the interpretations can be demonstrated within

the system itself.

In presenting the consequences of 9-01 and 9-02, we shall indicate

previous propositions by which any step in proof is taken, by giving the

number of the proposition in square brackets. Theorems of Chapter II

may, of course, be used exactly as if they were repeated in this chapter.

9-1 -p= (p =
0).

[9-01] -p = (-p =
1). And [3-2] -p = 1 is equivalent to p = 0.

9-12 -p='(p4:l).

[9-01] p =
(p =

1). Hence [3-2] -p = -(p =
1)

= (p =j= 1).

9-13 (p * 1)
=

(p
=

0).

[9-1-12]

9-14 (p*0) = (p= 1).

[9-13,3-2]

9 13 and 9 14 together express the fact that the algebra is two-valued.

Every proposition is either true or false.
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Up to this point that is, throughout Chapter II we have written the

logical relations "If . . .
, then . . .",

"
Either ... or -...", "Both

. . . and . . .", etc., not in the symbols of the system but just as they

would be written in arithmetic or geometry or any other mathematical

system. We have had no right to do otherwise. That "... c ..."

is by interpretation "If . . .
, then . . .", and ". . . + . . ." is by inter-

pretation "Either . . . or . . .", does not warrant us in identifying the

theorem "If acb, then -bc-a" with
"
(a c6) c (<-& c-a) ". We have

had no more reason to identify "If . . .
,
then . . ."in theorems with

"... c ..." than a geometrician would have to identify the period at

the end of a theorem with a geometrical point. The framework of logical

relations in terms of which theorems are stated must be distinguished from

the content of the system, even when that content is logic.

But we can now prove that we have a right to interchange the joint

assertion of p and q with p xg, "If p, then q", with pcq, etc. We can

demonstrate that if p and q are members of the class K, then p c q is a

member of K, and that "If p, then q", is equivalent to p cq. And we can

demonstrate that this is true not merely as a matter of interpretation but

by the necessary laws of the system itself. We can thus prove that writing

the logical relations involved in the theorems "Either . . . or . . .,"

"Both . . . and . . .," "If . . .
,
then . . ." in terms of +, x, c,

etc., is a valid procedure.

The theorems in which these things are proved are never needed here-

after, except in the sense of validating this interchange of symbols and their

interpretation. Consequently we need not give them any section number.

(1) If p is an element in K, p = I and p = are elements in K.

[9-01] If p is an element in K, p = 1 is an element in K. [1-6]

If p is an element in K, -p is an element in K, and hence [9 1] p =

is an element in A'.

(2) The two, p and q, are together equivalent to p x q, or p q.

[9-01] p q
=

(p q =
1). [5-73] pq = 1 is equivalent to the

pair, p = 1 and q
=

1, and hence [9-01] to the pair, p and q.

(3) If p and q are elements in K, then p c q is an element in K.

[4-9] p cq is equivalent to p -q =
0, and hence [9-1] to -(p-q),

But if p and q are elements in K, [1 6, 1 11 -(p -q) is an element in A'.

(4) -p is equivalent to "p is false".

[9-12] -p =
(p 4= 1), and [8-01] p 4= 1 is equivalent to "p = I

is false", and hence [9-01] to "p is false".

16



226 A Survey of Symbolic Logic

(5) peg is equivalent to "If p, then g".

[5-64] pcq gives "If p =
1, then q = 1", and hence [9-01]

"If p, then g".

And "If p, then g" gives peg, for [9-01] it gives "If p =
1, then

g
= 1 ", and

(a) Suppose as a fact p = 1. Then, by hypothesis, g
=

1, and

[2-2] pcq.

(b) Suppose that p 4= 1. Then [9-14] p =
0, and [5-63] peg.

(6) If p and g are elements in X, then p =
q is an element in K.

[7-1] p =
g is equivalent to p-q + -pq =

0, and hence [9-1]

to-(p-g + -pg). Hence [1-6, 1-1, 3-35] Q.E.D.

(7) p =
g is equivalent to "p is equivalent to g".

[2 2] p =
g is equivalent to "peg and g c p ".

By (5) above, "peg and g cp" is equivalent to "If p, then g, and

if g, then p". And this is equivalent to "p is equivalent to g".

(8) If p and g are elements in K, then p =J= 5"
is an element in X.

[9-02] (p + g)
= -(p =

g).

Hence, by (6) above and 1-6, Q.E.D.

(9) p 4= g is equivalent to "p is not equivalent to g".

By (4) and (2) above, Q.E.D.

(10) p + g is equivalent to "At least one of the two, p and g, is true.

[l-8]p + g
= -(-p-g).

By (4) and (2) above, -(-p-g) is equivalent to "It is false that

(p is false and g is false) ". And this is equivalent to "At least one

of the two, p and g, is true".

In consideration of the above theorems, we can henceforth write "...

c ..." for "If . . .
, then ...","... = ..." for ". . . is equivalent

to ...","... + ..." for "Either . . . or . . .", etc., for we have

proved that not only all expressions formed from elements in K and the

relations x and + are elements in K, but also that expressions which in-

volve c, and =, and 4= are elements in the system of the Two-Valued

Algebra. The equivalence of "If . . .
, then ..." with ". . . c . . .",

of "Both . . . and ..." with ". . . x . . .", etc., is no longer a matter

of interpretation but a consequence of 9-01, p =
(p

=
1). Also, we can

go back over the theorems of Chapter II and, considering them as propositions

of the Two-Valued Algebra, we can replace "If . . .
,
then . . .", etc.,
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by the symbolic equivalents. Each theorem not wholly in symbols gives a

corresponding theorem which is wholly in symbols. But when we consider

the Boole-Schroder Algebra, without the additional postulate, 9-01, this

procedure is not valid. It is valid only where 9-01 is one of the postulates

i. e., only in the system of the Two-Valued Algebra.

Henceforth we shall write all our theorems with p c q for "If p, then q",

p =
q for "p is equivalent to q", etc. But in the proofs we shall frequently

use "If . .'.
, then ..." instead of ". . . c . . . ", etc., because the

symbolism sometimes renders the proof obscure and makes hard reading.

(That this is the case is due to the fact that the Two-Valued Algebra does

not have what we shall hereafter explain as the true "logistic" form.)

9-15 4= 1.

0=0. Hence [9- 13] + 1.

9-16 (p + ?)
= (-P =

q)
= (p = -q).

(1) If p =
q and p =

1, then q + 1 and [9-13] q = 0.

And if p =
1, [3-2] -p = 0. Hence -p =

q.

(2) If p 4= q and p + 1, then [9-13] p =
0, and [3-2] -p = 1.

Hence if p =(= q, then q =t= 0, and [9 14] q
= 1 =

-p.

(3) If -p =
q and q

=
1, then -p =

1, and [3-2] p = 0.

Hence [9 -15] 2/4= q.

(4) If -p =
q and q =j= 1, then -p 4= 1, and [9-13] -p = 0.

Hence [3-2] p =
1, and p 4= q.

By (1) and (2), it p * q, then -p =
q. And by (3) and (4), if

-p =
q, then p 4= g. Hence p =J= q and -p = q are equivalent.

And[3-2](-p =
g)

=
(p

=
-q).

This theorem illustrates the meaning of the relation, =, in the calculus

of material implication. If p 4= q, then either p = 1 and q
= or p =

and q
= 1. But if p =

1, then -p =
0, and if p = 0, then -p = 1. Hence

the theorem. Let p represent "Caesar died", and q represent "There is

no place like home". If "Caesar died" is not equivalent to "There is

no place like home", then "Caesar did not die" is equivalent to "There

is no place like home". The equivalence is one of truth values
{
=

0} or

{
=

1} not of content or logical significance.

9-17 p =
(p

=
1)

=
(p * 0) = (-p = 0) = (-p 4= 1).

[9-OM3-14-16]

9-18 -p =
(p = 0) =

(p 4= 1)
= (-p =

1)
= (-p 4= 0).

[9-M3-14-16]
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9-2 (p = l)(p =
0)

= 0.

[2-4] p-p = 0. And [9-01] p = (p =
1); [9-1] -p = (p =

0).

No proposition is both true and false.

9-21 (p* I)(p4=0) =0.

[2-4] -pp = 0. And [9-18] -p = (p 4= 1); [9-17] p = (p =t= 0).

9-22 (p =
l) + (p

=
0) = 1.

[4-8]p + -p = l. Hence [9-01-1] Q. E. D.

Every proposition is either true or false.

9-23 (p* l) + (p*0) = 1.

[4-8,9-01-1]

Theorems of the same sort as the above, the proofs of which are obvious,

are the following:

9-24 (pg) = (pg=l) = (pg4:0) = (p = l)(g -
1)
- (p + 0)(g 4= 0)

= (p * 0)(g -
1)
- (p

=
l)(g 4= 0) = -(-p + -g)

= (-p + -g =
0) =

[(p
=

0) + (g
= 0) =0]

=
[(p * 1) + (q 4= 1)

=
0], etc., etc.

9-25 (p + g) _(p + 9 -l) - (p+g =1=0) =
(p

=
1) + (9

=
1)

=
(P * 0) + (g * 0) = -(-p-g) =

[(p
= 0)(g

= 0) = 0]

=
[(P * l)(g =*= 1) 4= 1], etc., etc.

These theorems illustrate the variety of ways in which the same logical

relation can be expressed in the Two-Valued Algebra. This is one of the

defects of the system its redundancy of forms. In this respect, the

alternative method, to be discussed later, gives a much neater calculus of

propositions.

We turn now to the properties of the relation c . We shall include here

some theorems which do not require the additional postulate, 9-01, for the

sake of bringing together the propositions which illustrate the meaning of

"material implication".

9-3 (peg) = (-p+g) = (p-g =
0).

[4-9] (peg) = (p-g = 0) = (-p + g = 1).

[9-01] (-p + g
=

1)
= (-p + g).

"p materially implies g" is equivalent to "Either p is false or g is true",

and to "It is false hat p is true and g false".

Since peg has been proved to be an element in the system,
"
It is false

that p materially implies g" may be symbolized by -(p c g).



Systems Based on Material Implication 229

9-31 -(peg) = (-p + q
=

0)
= (p-g).

[3-4] -(-p+g) = p-q. And [9-3] -(peg) = -(-p+g).

[9 .02] -(-p + g)
= (-p+q =

0).

"p does not materially imply q" is equivalent to "It is false that either p

is false or g is true", and to "p is true and g false".

9-32 (p
= 0) c(pcg).

[5-63] Ocg. Hence Q.E.D.

If p is false, then for any proposition g, p materially implies g. This is

the famous or notorious theorem: "A false proposition implies any

proposition".

9-33 (g=l)c(pcg).

[5-61] pel. Hence Q.E.D.

This is the companion theorem: "A true proposition is implied by any

proposition".

9-34 -(p eg) c (p
=

1).

The theorem follows from 9-32 by the reductio ad absurdum,

since if -(peg), then [9-32] p 4= 0, and [9-14] p = 1.

If there is any proposition, g, which p does not materially imply, then p is

true. This is simply the inverse of 9-32. A similar consequence of 9 33 is :

9-35 -(peg) c(g =
0).

If -(peg), then [9-33] g 4= 1, and [9-13] g
= 0.

If p does not materially imply g, then g is false.

9-36 -(p c g) c (p c -g) ; -(p c g) c (-p c g) ; -(p c g) c (-p c -g).

[9-34-35] If -(peg), then p = 1 and g
= 0.

[3-2] If p =
1, -p = 0, and if g

= 0, then -g = 1.

[9 32] If -p = 0, then -peg and -p c -g.

[9-331 If -g =
1, then pc-g.

If p does not materially imply g, then p materially implies the negative,

or denial, ef g, and the negative of p implies g, and the negative of p implies

the negative of g. If "Today is Monday" does not materially imply

"The moon is made of green cheese", then "Today is Monday" implies

"The moon is not made of green cheese", and "Today is not Monday"

implies "The moon is made of green cheese", and "Today is not Monday"

implies "The moon is not made of green cheese".

Some of the peculiar properties of material implication are due to the
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fact that the relations of the algebra were originally devised to represent

the system of logical classes. But 9-36 exhibits properties of material

implication which have no analogy amongst the relations of classes. 9-36

is a consequence of the additional postulate, p =
(p

=
1). For classes, c

represents "is contained in": but if a is not contained in b, it does not

follow that a is contained in not-6 a may be partly in and partly outside

of 6.

9-37 -(pcq)c(qcp).

[9 36] If -(p c q), then -p c -q, and hence [3-1] q c p.

Of any two propositions, p and q, if p does not materially imply q, then q

materially implies p.

9-38 (pq)c[(pcq)(qcp)].

[9-24] pq = (p =
l)(g

=
1). Hence [9-33] Q.E.D.

If p and q are both true, then each materially implies the other.

9-39 (-p-q)c[(pcq)(qcp-)}.

[9-24] -p-q = (-p = l)(-g =
1)
= (p = 0)fo = 0).

Hence [9-32] Q.E.D.

If p and q are both false, then each materially implies the other.

For any pair of propositions, p and q, there are four possibilities:

1) p =
1, q

= 1: p true, q true.

2) P = 0, q = 0: p false, q false.

3) p =
0, q

= 1 : p false, q true.

4) p =
I, q = 0: p true, q false.

Now in the algebra, cO, 1 c 1, and c 1; but 1 cO is false. Hence in

the four cases, above, the material implications and equivalences are as

follows :

1) pcq, qcp, p =
q.

2) pcq, qcp, p =
q.

3) pcq, -(qcp), p 4= q.

4) -(pcq), qcp, p + q.

This summarizes theorems 9-31-9-39. These relations hold regardless of

the content or meaning of p and q. Thus pcq and p = q are not the

"implication" and "equivalence" of ordinary logic, because, strictly speak-

ing, p and q in the algebra are not "propositions" but simply the "truth

values" of the propositions represented. In other words, material impli-
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cation and material equivalence are relations of the extension of proposi-

tions, whereas the "implication" and "equivalence" of ordinary logic are

relations of intension or meaning. But, as has been mentioned, the material

implication, p c q, has one most important property in common with
"
q

can be inferred from p" in ordinary logic; if p is true and q false, pcq
does not hold. And the relation of material equivalence, p =

q, never

connects a true proposition with a false one.

These theorems should make as clear as it can be made the exact

meaning and character of material implication. This is important, since

many theorems whose significance would otherwise be very puzzling follow

from the unusual character of this relation.

Two more propositions, of some importance, may be given :

9-4 (pqcr) = (qpcr) = [pc(qcr)] = [qc(pcr)].

[1-3] pq = qp- Hence [3-2] -(p q)
= -(qp), and [-(p q) + r]

= Hq p) + r].

But [9 3] [-(p q) + r]
=

(p q c r), and [-(q p) + r]
= (qpcr).

And [3-41] [-(p q) + r]
=

[(-p + -q) + r]
=

[-p + (-q + r)]
=

[p c (q c r)]

Similarly, [-(q p) + r]
= [qc(pcr)].

This theorem contains Peano's Principle of Exportation,

[(p q)cr]c[pc(qc r)]

"If pq implies r, then p implies that q implies r"; and his Principle of

Importation,

[P <= (q c r)] c [(p q} c r]

"
If p implies that q implies r, then if p and q are both true, r is true.

"

9-5 [(p q) c r]
=

[(p -r} c -q]
=

[(q -r) c -p].

[9 3] [(p q)cr] = [-(p q) + r]
= [(-p + -g) + r]

= [(-p + r) + -q]

=
[(~q + r) + -p] = [~(p -r) + -q]

=
[-(q -r) + -p].

[9-3] [-(p-r)+-q] = [(p-r) c-q], and

[~(q-r) + -p]
=

[(q-r) c-p].

If p and q together imply r, then if p is true but r is false, q must be false,

and if q is true but r is false, p must be false. This is a principle first stated

by Aristotle, but especially important in Mrs. Ladd-Franklin's theory of

the syllogism.

We have now given a sufficient number of theorems to characterize the

Two-Valued Algebra to illustrate the consequences of the additional
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postulate p = (p =
1), and the properties of peg. Any further theorems

of the system will be found to follow readily from the foregoing.

A convention of notation which we shall make use of hereafter is the

following: A sign =, unless enclosed in parentheses, takes precedence over

any other sign; a sign c, unless enclosed in parentheses, takes precedence

over any + or x
; and the sign +

, unless enclosed in parentheses, takes

precedence over a relation x . This saves many parentheses and brackets.

II. THE CALCULUS OF PROPOSITIONAL FUNCTIONS. FUNCTIONS OF ONE

VARIABLE

The calculus of prepositional functions is an extension of the Two-

Valued Algebra to propositions which involve the values of variables. Fol-

lowing Mr. Russell,
3 we may distinguish propositions from prepositional

functions as follows: A proposition is any expression which is either true

or false; a prepositional function is an expression, containing one or more

variables, which becomes a proposition when each of the variables is re-

placed by some one of its values.

There is one meaning of "Today is Monday" for which 'today' denotes

ambiguously Jan. 1, or Jan. 2, or . . . , etc. For example, when we say

"'Today is Monday' implies 'Tomorrow is Tuesday'", we mean that if

Jan. 1 is Monday, then Jan. 2 is Tuesday; if Jan. 2 is Monday, then Jan.

3 is Tuesday; if July 4 is Monday, then July 5 is Tuesday, etc. 'Today'

and 'tomorrow' are here variables, whose values are Jan. 1, Jan. 2, Jan. 3,

etc., that is, all the different actual days. When 'today' is used in this

variable sense, "Today is Monday" is sometimes true and sometimes false,

or more accurately, it is true for some values of the variable 'today ', and

false for other values. "Today is Monday" is here a propositional function.

There is a quite different meaning of "Today is Monday" for which

'today' is not a variable but denotes just one thing Jan. 22, 1916. In

this sense, if "Today is Monday" is true it is always true. It is either

simply true or simply false: its meaning and its truth or falsity cannot

change. For this meaning of 'today ',

"
Today is Monday

"
is a proposition.

'Today,
'

meaning Jan. 16, 1916, is one value of the variable 'today'. When

this value is substituted for the variable, then the propositional function is

turned into a proposition.

3 See Principles of Mathematics, Chap, vu, and Principia Mathematica, i, p. 15. Mr.

Russell carries out this distinction in ways which we do not follow. But so far as is here

in question, his view is the one we adopt. Principia Mathematica is cited hereafter as

Principia.
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We may use <px, $(x, y}, $(x, y, z), etc., to represent prepositional

functions, in which the variable terms are x, or x and y, or x, y, and z, etc.

These propositional functions must be carefully distinguished from the

functions discussed in Chapter II. We there used /, F, and the Greek

capitals, $, ^, etc., to indicate functions; here we use only Greek small

letters. Also, for any function of one variable, we here omit any parenthesis

around the variable <px, \[/y, x.

f(x], ^(x, y}, etc., in Chapter II are confined to representing such

expressions as can be formed from elements in the class K and the relations

x and + . If and y in ty(x, y} are logical classes, then ^(x, y) is some

logical class, such as x + y or a x + b -y. Or if x in /(#) is a proposition,

then f(x) is some proposition such as a x or -x + b. The propositional

functions, <px, \f/(x, ?/), f (x, y, z), etc., are subject to no such restriction.

<px becomes a proposition when x is replaced by one of its values, but it

does not necessarily become any such proposition as ax or -x + b. 'x is

Monday,
' '

x is a citizen of y,
' '

y is between x and z
'

these are typical

propositional functions. They are neither true nor false, but they become

either true or false as soon as terms denoting individual things are sub-

stituted for the variables x, y, etc. All the functions in this chapter are

such propositional functions, or expressions derived from them.

A fundamental conception of the theory of propositional functions is

that of the "range of significance". The range of significance of a function

is determined by the extent of the class, or classes, of terms which are

values of its variables. All the terms which can be substituted for x, in

<px, and 'make sense', constitute the range of <px. If <px be 'x is mortal',

the range of this function is the aggregate of all the individual terms for

which 'x is mortal' is either true or false. Thus the "range of significance"

is to propositional functions what the "universe of discourse" is to class

terms. Two propositional functions, <px and tyy, may be such that the

class of values of x in px, or the range of <px, is identical with the class of

values of y in ^y, or the range of $y. Or the two functions may have

different ranges of significance, 'x is a man' and 'x is a poet' will have the

same range, though the values of x for which they are true will differ. Any x

for which 'x is a man' is either true or false, is also such that 'a: is a poet'

is either true or false. But some x's for which 'a; is a poet' is either true

or false are such that 'x precedes a*+l' is nonsense, 'a; is a poet' and

'x precedes x+1' have different ranges.
4 It is important to note that the

4
According to Mr. Russell's "theory of types" (see Principia, i, pp. 41-42), the one

fundamental restriction of the range of a propositional function is the principle that nothing
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range of <px is determined, not by x, but by <p. <px and <py are the same

function.

If we have a prepositional function of two variables, say
e

x is a citizen

of y ', we must make two substitutions in order to turn it into a proposition

which is either true or false. And we conceive of two aggregates or classes

the class of values of the first variable, x, and the class of values of the second

variable, y. These two classes may, for a given function, be identical, or

they may be different. It depends upon the function. "John Jones is a

citizen of Turkey" is either true or false; "Turkey is a citizen of John

Jones" is nonsense. But "3 precedes 5" is either true or false, as is also

"5 precedes 3". The range of x and of y in \f/(x, y} depends upon ^, not

upon x and y.

A convenient method of representing the values of x in <f>x is by x\, x2 ,

Xz, etc. This is not to presume that the number of such values of x in <px

is finite, or even denumerable. Any sort of tag which would distinguish

these values as individual would serve all the uses which we shall make

of Xi, x 2 ,
xz , etc., equally well. If Xi, x 2 ,

x 3 , etc., are individuals,
5 then

<pXi, <px 2 , (f>xs , etc., will be propositions; and <px n will be a proposition.

<fXz is a proposition about a specified individual; <pxn is a proposition about

'a certain individual' which is not specified.
6

Similarly, if the values of x

in \l/(x, y} be x\, x*, xs , etc., and the values of y be y\, y 2 , yz, etc., then

tfa> 2/3), t(xz, yn), t(xm , yn), etc., are propositions.

We shall now make a new use of the operators II and S, giving them

a meaning similar to, but not identical with, the meaning which they had

in Chapter II. To emphasize this difference in use, the operators are here

set in a different style of type. We shall let 2 x <px represent <f>Xi + <px 2 + <px 3

+ ... to as many terms as there are distinct values of x in <px. And Ux <px

will represent <pXi x <pxz x <px z x . . . to as many terms as there are distinct

values of x in <px. (We have heretofore abbreviated a x6 to a b or a -b.

But where prepositional functions are involved, the form of expressions is

that presupposes the function, or a function of the same range, can be a value of the func-

tion. It seems to us that there are other restrictions, not derived from this, upon the

range of a function. But, fortunately, it is not necessary to decide this point here.
6 "Individuals" in the sense of being distinct values of x in <px which is the only

conception of "individual" which we require.
6 It may be urged that ipxn is not a proposition but a prepositional function. The

question is most difficult, and we cannot enter upon it. But this much may be said:

Whenever, and in whatever sense, statements about an unspecified individual can be

asserted, <pxn is a proposition. If any object to this, we shall reply "A certain gentle-

man is confused". Peirce has discussed this question most acutely. (See above, pp.

93-94.)
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likely to be complex. Consequently we shall, in this chapter, always

write "products" with the sign x.)

The fact that there might be an infinite set of values of x in <px does

not affect the theoretical adequacy of our definitions. For nothing here

depends upon the order of <pxm, <pxn, <pxp, and it is only required that the

values of x which are distinct should be identifiable or "tagable". The ob-

jection that the values of x might not be even denumerable is more serious,

but the difficulty may be met by a device to be mentioned shortly.

Since <pxi, <px z, <f>x s , etc., are propositions, <pxi + <px z + <?x 3 + . . . is a

proposition the proposition, "Either <pxi or <px z or <px 3 or ... etc.". Thus

I,x (px represents "For some value of x (at least one), <px is true". And

2x <px is a proposition. Similarly, <px\ x <px 2 x <px s x ... is the joint assertion

of <px\ and tpxz and <px3 , etc. Thus Hx <f>x represents the proposition "For

all values of x, <px is true". We may translate 2x <px loosely by
"

<px is

sometimes true", and Iix <px loosely by
"

<px is always true". This trans-

lation fails of literal accuracy inasmuch as the variations of x in (px may
not be confined to differences of time.

The conception of a prepositional function, <px, and of the class of values

of the variable in this function, thus give us the new types of proposition,

<px s , <pxn ,
2x <px, and Ux <px. Since the laws of the Two-Valued Algebra

hold for propositions generally, all the theorems of that system will be

true when propositions such as the above are substituted for a, b, ... p, q,

etc. (We must, of course, remember that while a, b, ... p, q, etc., in the

Two-Valued Algebra represent propositions, x in <px, etc., is not a proposi-

tion but a variable whose values are individual things. In the theorems

to follow, we shall sometimes need a symbol for propositions in which no

variables are specified. To avoid any possible confusion, we shall represent

such propositions by a capital letter, P.) We may, then, assume as already

proved any theorem which can be got by replacing a, b, ... p, q, etc., in

any proposition of the Two-Valued Algebra, by <px 3 , <f>xn , 2x <px, or Ilx <px.

Additional theorems, which can be proved for propositions involving values

of variables, will be given below. These are to be proved by reference to

earlier theorems, in Chapter II and in Section I of this chapter. As before,

the number of the theorem by which any step in proof is taken will be given

in square brackets. Since the previous theorems are numbered up to 9-,

the additional theorems of this section will be numbered beginning with 10 .

One additional assumption, beyond those of the Two-Valued Algebra,

will be needed. The propositions which have been proved in sufficiently
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general form to be used where sums and products of more than three terms

are in question all require for their demonstration the principle of mathe-

matical induction. If, then, we wish to use those theorems in the proofs

of this section, we are confronted by the difficulty that the number of

values of x in <px, and hence the number of terms in ~Zx <f>x and Tlx <f>x may
not be finite. And any use of mathematical induction, or of theorems

dependent upon that principle for proof, will then be invalid in this con-

nection. Short of abandoning the proposed procedure, two alternatives

are open to us: we can assume that the number of values of any variable

in a prepositional function is always finite; or we can assume that any

law of the algebra which holds whatever finite number of elements be involved

holds for any number of elements whatever. The first of these assumptions

would obviously be false. But the second is true, and we shall make it.

This also resolves our difficulty concerning the possibility that the

number of values of x in <px might not be even denumerable, and hence

that the notation <pxi + <px + <px s + . . . and tpx\ x tpx z x <px s x . . . might be

inadequate. We can make the convention that if the number of values of x

in any function, <px, be not finite, <px\ + <px2 + <f>x 3 + . . ., or 2x <px, and

<f>Xi x <pxz x <px 3 x . . . , or nx <px, shall be so dealt with that any theorem to

be proved will be demonstrated to hold for any finite number of values

of # in <px; and this being proved, our assumption allows us to extend the

theorem to any case in which the values of the variable in the function are

infinite in number. This principle will be satisfactorily covered by the

convention that <pxi + <px2 + <px 3 + . . . and <px\ x <px 2 x <px s x . . . shall always

be supposed to have a finite but undetermined number of terms, and any

theorem thus proved shall be presumed independent of the number of

distinct values of any variable, x, which is involved. 7

This postulate, and the convention which makes it operative, will be

supposed to extend also to functions of any number of variables, and to

sums, products, and negatives of functions.

No further postulates are required, but the following definitions are

needed :

10-01 2<px = 2x <px
=

<f>Xi+ <px<t + <f>x s + .... Def.

10-02 H<fX = Ux <px
=

<pxi x <pxz x <px z x .... Def.

10-03 -<px = -{<px}. Def.

7 This procedure, though not invalid, is far from ideal, as are many other details of

this general method! We shall gather the main criticisms together in the last section of

this chapter. But it is a fact that in spite of the many defects of the method, the results

which it gives are without exception valid.
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10-031 -<pxn
= ~{<pxn }. Def.

10-04 -ttx <px = -{Ux <f>x}. Def.

10-05 -2 x <px
= -{2x <px} Def.

The last four merely serve to abbreviate the notation.

Elementary theorems concerning propositions which involve values of

one variable are as follows:

10-1 ^<px = -U-ipx.

[5-951] <f>Xi+ <px 2 + <

10-12 U<px = -2 -<px.

[5-95] <pxi x <px 2 x (f>

10-1 states that "For some values of x, <px is true" is equivalent to the

denial of "For all values of x, <px is false". 10-12 states that "For all

values of x, <px is true" is equivalent to the denial of "For some values

of x, <px is false". These two represent the extension of De Morgan's

Theorem to propositions which involve values of variables. They might

be otherwise stated: "It is true that all x is
"

is equivalent to "It is

false that some x is not "', and "It is true that some xis
"

is equiva-

lent to "It is false that all x is not ".

10-2 H<px c <pxn -

[5 99] <f>xi x tpxz x (px s x . . . c tpx\

and (f>Xi x <px2 x <px 3 x . . . c <pxz

and <pxi x <px 2 x <px 3 x . . . c <pxa , etc., etc.

10-21 <pxn c~2(px.

[5 991] (f>Xi c <pxi + tpx z + <px 3 + . . .

and <px z c <px\ + <px 2 + <pxs + . . .

and <pXz c <pxi + <px 2 + <px 3 + . . .
, etc., etc.

By 10-2, if <px is true for all values of x, then it is true for any given value

of x, or "What is true of all is true of any given one". By 10-21, If <?x is

true for one given value of x, then it is true for some value of x, or
" What

is true of a certain one is true of some". It might be thought that the

implication stated by 10-21 is reversible. But we do not have 2<px c <pxn ,

because <pxn may be <px 2 , and 2 <px c <f>x 2 would not hold generally. For

example, let <px
= "Today (x) is Monday". Then S<px will mean "Some

day is Monday", but <pxn will mean "Today (Jan. 1) is Monday", or will

mean "Today (Feb. 23) is Monday", etc. "Some day is Monday" does
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not imply "Jan. 1 is Monday", and does not imply "Feb. 23 is Monday "-

does not imply that any one given day is Monday. xn in <pxn means "
a

certain value of x" in a sense which is not simply equivalent to "some

value of x". No translation of <pxn will give its exact significance in this

respect.

10-22 H<f>xc2<px.

[5-1, 10-2-21]

Whatever is true of all is true of some.

10-23 H<px is equivalent to "Whatever value of x, in <px, xn may be, <f>xn ".

H<px =
<pxi x (px2 x <px s x . . .

=
(<f>xi x <px% x (f>x s x ... =1) [9-01]

And [5-971] <px\ x tpx2 x <px s x . . . =1 is equivalent to the set

<f>Xi
=

1, <pXs
=

1, <pX 3
=

1,

And [9-01] <pxn
= 1 is equivalent to <pxn .

Hence II <px is equivalent to the set <px\, <px 2 , <?x s ,
....

This proposition is not tautological. It states the equivalence of the

product ipxi x <px 2 x <px 3 x . . . with the system of separate propositions

<f>Xi, <px 2 , <pxs, etc. It is by virtue of the possibility of this proposition

that the translation of U<px as "For all values of x, <px is true" is legitimate.

In this proof we make use of the principle, p = (p =
1) the only case in

which it is directly required in the calculus of propositional functions.

By virtue of 10 23 we can pass directly from any theorem of the Two-

Valued Algebra to a corresponding theorem of the calculus of propositional

functions. If we have, for example, pc.p+q, we have also "Whatever

value of x, in <px, xn may be, <pxn c <f>x n + P". And hence we have, by

10-23, TLx[<f>x c <px + P]. We shall later see the importance of this: it

gives us, for every theorem concerning "material implication", a cor-

responding theorem concerning "formal implication".

Next, we give various forms of the principle by which any proposition

may be imported into, or exported out of, the scope of a II or 2 operator.

10-3 2<px + P = 2x (<px + P).

S <pX * P =
( tf>Xi + tpX 2 + <pX 3 +...) + P

=
(^.r 1 + P) + (^ 2 + P) + (^3 + P)+ ... [5-981]

10-31 P +

Similar proof.

10 3 may be read :

" '

Either for some x, <px is true, or P is true
'

is equiva-
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lent to 'For some x, either <px is true or P is true'". And 10-31 may be

read: "'Either P is true or, for some x, <px is true' is equivalent to 'For

some x, either P is true or <px is true'".

10-32 IL<px + P = Ux (<px + P).

II <px + P =
( <pXi x <px 2 x <px 3 x . . . ) + P

=
(<pxi + P) x ((facz + P) x (<px s + P) x . . . [5-941]

10-33 P

Similar proof.

''Either P is true or, for every x, <px is true" is equivalent to "For every x,

either P is true or <$x is true."

10-34 SsOz + P) = Ss(P+ <px).

[4-3] Z^r + P = P+S^.T. Hence [10-3-31] Q.E.D.

10-35 nx(^r + P) = H2(P+ *r).

[10-32-33]

Exactly similar theorems hold where the relation of the two propositions

is x instead of + . The proofs are so simple that only the first need be

given.

10-36 2<px xP = 2x (<px xP).

2 <px x P =
( (pxi + <px z + <f>x s + . . . ) x P

=
( <pxj. x P) + ( <pz2 x P) + ( (pxz x P) + . . . [5-94]

" ^ is true for some ic, and P is true", is equivalent to "For some x, <px

and P are both true".

10-361 PxS^sr = Sx(Px^c).

10-37 ft<px xP = ttx (<px xP).

10-371

10-38

io-38i nx (^.T xP) = nx(P x <px).

We should perhaps expect that a proposition, P, might be imported

into and exported out of the scope of an operator when the relation of P
to the other member of the expression is c . But here the matter is not

quite so simple.
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10-4 P

[9-3] P c 2v*r = -P + S<pz = -P

[5-981]

= (P c tpxj + (P c <px z) + (P c ^ 3) + [9-3]

The relation c
, in the above, is, of course, a material implication.

But it is tedious to read continually "p materially implies </". We shall,

then, translate p cq simply by "p implies q", or by "If p, then q".

10-4 reads: "P implies that for some .r, <px is true" is equivalent to

"For some x, P implies that <p.r is true". This seems clear and obvious,

but consider the next :

10-41

[9-3] 2<pxcP = -S^.r + P = Il-^r + P [10-12]

=
(-tpXi *-<pX 2 X-^s X . . .) + P

= (-^d + P) x (-<p.r 2 + P) x (-^r s + P) . . . [5-941]

P)... [9-3]

"'^>.T is true for some x' implies P" is equivalent to "For every x, <f>x

implies P". It is easy to see that the second of these two expressions gives

the first also : If <px always implies P, then if <px is sometimes true, P must

be true. It is not so easy to see that 2<p.r cP gives Hx (<px cP). But we

can put it thus: "If <px is ever true, then P is true" must mean "
<px

always implies P".

10-42 PcH^a: = UX(P c ^.r).

[9-3] P c II <px
= -P + n <px

= -P +
( <f>Xi x <px x <px z x . . . )

= (-P + <?.TI) x (-P + <px z)
x (-P + <pxs) x ...

[5-941]

= (P c ipxj x (P c ^ 2)
x (P c p.r 3) . . . [9-3]

"P implies that px is true for every a:" is equivalent to "For every x, P

implies <px".

10-43 H^cP = 2s(<pxcP).

[9-3] n^rcp = -n^ + P = s-^c + p [io-i]

= - <.r i + - <.T 2 + - <x 3 +...+ P
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=
(- (f>xi + P) + (- <pxz + P) + (- <px a + P) + ...

[5-981]

P) + ... [9-3]

"'<# is true for every a: '.implies that P is true" is equivalent to "For

some x, <px implies P". At first sight this theorem seems to commit the

"fallacy of division" going one way, and the "fallacy of composition"

going the other. It suggests the ancient example about the separate hairs

and baldness. Suppose <f>x be
"
If a: is a hair of Mr. Blank's, x has fallen

out". And let P be "Mr. Blank is bald". Then n^x cP will represent

"If all of Mr. Blank's hairs have fallen out, then Mr. Blank is bald".

And Sz ( <px c P) will represent
"
There is some hair of Mr. Blank's such

that if this hair has fallen out, Mr. Blank is bald". In this example,

U(px c P is obviously true, but 2x(<px c P) is dubious, and their equivalence

seems likewise doubtful. The explanation of the equivalence is this: we

here deal with material implication, and <pxn c P means simply
"
It is

false that (<pxn is true but P is false)". U<px cP means, in this example,
"
It is false that all Mr. Blank's hairs have fallen out but Mr. Blank is not

bald"; and Sx(^xcP) means "There is some one of. Mr. Blank's hairs

such that 'This hair has fallen out but Mr. Blank is not bald' is false".

No necessary connection is predicated between the falling out of any single

hair and baldness material implication is not that type of relation.

If we compare the last four theorems, we observe that an operator in

the consequent of an implication is not changed by being extended in scope

to include the whole relation, but an operator in the antecedent is changed

from II to 2, from S to II . This is due to the fact that p c q is equivalent

to -p + q, where the sign of the antecedent changes but the consequent

remains the same; and to the law -IIQ = S-Q, -S() = II- Q.

The above principles, connecting any proposition, P, with a preposi-

tional function and its operator, are much used in later proofs. In fact,

all the proofs can be carried out simply by the various forms of this principle

and theorems 10-1-10-23. Since P, in the above, may be any propo-

sition, fan ,
"2fa, Ufa, etc., can be substituted for P in these theorems.

(<px + fa) and (<px xfa) are, of course, functions of x. In order that

( (f>x
+ fa) be significant, <px must be significant and fa must be significant,

and it is further requisite that "Either <px or fa" have meaning. Such

considerations determine the range of significance of complex functions

like ( (px + fa) and ( p.r x fa) . A value of x in such a function must be at

17
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once a value of x in <px and a value of x in fa: xn in <pxn and in fa n , in

(<pxn + fan), denotes identically the same individual.

10-5 2 <px + 2fa = 2Z ( <pz + #r).

Since addition is associative and commutative,

S <p

"Either for some x, <px, or for some x, fa" is equivalent to "For some x,

either <px or fa".

If it be supposed that the functions, <px and fa, may have different

ranges i. e., that the use of the same letter for the variable is not indicative

of the range then S<pz + I,fa might have meaning when ^,x (tpx + fa) did

not. But in such a case the proposition which states their equivalence

will not have meaning. We shall make the convention that xn in <pxn

and xn in fan are identical, not only in ((pxn +fan) and (<pxn *fan), but

wherever tpx and fa are connected, as in ^<px + 2fa. Where there is no

such presumption, it is always possible to use different letters for the

variable, as S <px + ^y. But even without this convention, the above

theorem wr
ill always be true when it is significant i. e., it is never false

and a similar remark applies to the other theorems of this section.

10-51 U<px xUfa = TLx (tpx xfa).

Since x is associative and commutative, similar proof.

We might expect 2<f>xx2fa = 2x(<pxxfa) to hold, but it does not.

"For some x, x is ugly, and for some x, x is beautiful", is not equivalent to,

"For some x, x is ugly and x is beautiful". Instead of an equivalence, we

have an implication:

10 52 2 X ( <px x fa) c 2 <px x I,fa.

[5-21 ( <pxn x fan) c <pxn , and ( <px n x fan) c fan

Hence [5-31] 2x (</>x xfa) cS^.r, and ^f ((px xfa) cZfa
Hence [5 34] 2Z ( <px x fa) cZpx xZfa

Similarly, Hpx + Ufa = Ux ((f>x + fa) fails to hold. "Either for every

x, x is ugly, or for every x, x is beautiful ", is not equivalent to,
"
For every x,

either x is ugly or x is beautiful ". Some x's may be ugly and others beauti-

ful. But we have:
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10-53

[5-21] (pxn c ( <f>xn + fan), and ^.rn c ( <pxn + fe)
Hence [5-3] U<f>x c nx (<^x + #r), and IIi/^ c III (^a; + fa)

Hence [5 33] II <px + n^a: c nx ( <px + #r)

In the proof of the last two theorems, we write a lemma for <pxn instead

of writing it for <pxi, for <px 2 , for <px 3 , etc. For example, in 10-52 we write

(<pxn xfan) c (f>xn, instead of writing

fai c <pxi

( <px2 x fa 2) c <px 2

(<px 3 xfa 3) c (pxz, etc., etc.

The proofs are somewhat more obvious with this explanation. This method

of writing such lemmas will be continued.

With two prepositional functions, <px and fa, we can form two impli-

cation relations, 2x (<px cfa) and ILx (<px cfa). But 2x (<px c fa) states

only that there is a value of x for which either px is false or fa is true:

and this relation conveys so little information that it is hardly worth while

to study its properties.

nx(<pxcfa) is the relation of "formal implication" "For every xr

at least one of the two,
'

<px is false' and 'fa is true', is a true statement".

The negative of Rx (<px cfa) is 2x ((f>x x-fa), so that H.x(<px cfa) may also-

be read "It is false that there is any x such that px is true and fa false".

The material implication, p c q, states only "At least one of the two,
'

p is

false' and 'q is true', is a true statement"; or, "It is false that p is true

and q false". The material implication, <pxn cfan , states only "At least

one of the two,
'

<p is false of xn
'

and
'

\f/
is true of xn ', is a true statement";

or "It is false that <pxn is true and fan is false". But the formal impli-

cation, Hx (<px cfa), states that however xn be chosen, it is false that <pxn

is true and fan is false in the whole range of <px and fa, there is not a

case in which <px is true and fa false. To put it another way, Ux (<px c fa)

means "Whatever has the predicate <p has also the predicate \[/".

This relation has more resemblance to the ordinary meaning of "im-

plies" than material implication has. But formal implication, it should

be remembered, is simply a class or aggregate of material implications;

Hx (<px c fa) is simply the joint assertion of <px t c fai, <pxz c fa, <px* c fa^,

etc., where each separate assertion is a material implication.
8

8 The whole question of material implication, formal implication, and the usual mean-

ing of "implies", is discussed in Section v of Chap. v.
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The properties of formal implication are especially important, because

upon this relation are based certain derivatives in the calculus of classes

and in the calculus of relations.

10-6 Hx (<px cfa) = Hx (-<f>x + fa) = Hx

[9 3] <f>Xn C fa n = -
<pXn + fan = ~(<pXn X -fan)

Hence [10-23] Q E.D.

10-61 Ux ((f>X Cfa) C (<pXn Cfan).

[10-2]

If (?x formally implies fa, then <pxn materially implies fan .

10-611 [Ux ((f>x cfa) x (pxn] cfan .

[9-4, 10-61]

If <px formally implies fa and <p is true of xn , then ^ is true of x n . This is

one form of the syllogism in Barbara: for example, "If for every x, 'x is a

man' implies 'a; is a mortal', and Socrates is a man, then Socrates is a

mortal".

10-62 ILx (<f>x cfa) c.*2x(vx cfa).

[10-22]

10-63 U

[10-61] If Hx(<px cfa), then <pxn cfan

Hence [5-3] Q.E.D.

10-631 [Ux ( <px c fa) x n tpx] c Ufa.

[9-4, 10-62]

If <px always implies fa and <px is always true, then fa is always true.

10 64 Ux ( <px c fa) c(2<pxc Sfa) .

[10-61, 5-31]

10 641 [nx ( <f>x cfa)*? tpx] c 2fa.

[9-4, 10-64]

If <px always implies fa and <px is sometimes true, then fa is sometimes true.

10-65 [Ux((f>xcfa) *TLx(fa cfcr)] cUx (ifXE cx).

[10-61] If Ux(<pxcfa) and H.x(fa c x), then <px r cfan and

fa n c xn .

Hence [5-1] whatever value of x, xn may be, </>xn cxn .

Hence [10-23] nx(^arcfa;)
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This theorem states that formal implication is a transitive relation. It is

another form of the syllogism in Barbara. For example let <px = 'x is a

Greek', fa = 'x is a man', and far
= 'a* is a mortal'; 10-65 will then read:

"If for every x, 'a; is a Greek' implies 'x is a man', and for every x, 'x is a

man' implies 'a: is a mortal', then for every x, 'a; is a Greek' implies 'a: is a

mortal'".

10-65 may also be given the form:

10-651 Ux(<pxcfa) c[Ilx(facx) c Ux (<f>x cfar)].

[9-4, 10-65]

10-652 Ur (\f/x cfar) c[Ux(<px cfa) cllx (<px cfa;)].

[9-4, 10-65]

10 -66 Ux ( <px c fa) = Ilx(-fa c-<px).

[3-1] ( <pxn c fan)
= (-fan c -

<pxn)

Hence [2-2, 5-3] Q.E.D.

Any further theorems concerning formal implication can be derived

from the foregoing.

"Formal equivalence" is reciprocal formal implication, just as material

equivalence is reciprocal material implication. The properties of formal

equivalence follow immediately from those of formal implication.

10-67 Hx (<f>x
= fa) = [Hx (<px c fa) *Hx(fa c pa:)].

Whatever value of x, xn may be, [2-2] <pxn
=

\f/xn is equivalent

to the pair, <pxn c \{/xn and 4>xn c <pxn .

Hence [10-23] Q.E.D.

10-68 [TLx (tpx
= $x} xnx(^ =

fa;)] cllx (<f>x
=

fa;).

Whatever value of x, xn may be, if <px
= ^x and \px

=
fa;, then

<px
=

far. Hence [10-23] Q.E.D.

10-681 Ux (<f>x
=

\l/x) c[Ux (\lfX
=

fa;) cTLx(<px
=

fa;)].

[10-68, 9-4]

10-682 Ilx(tx =
fa;) c[Ux (<px

= $x) cTLx (<px
=

fa;)].

[10-68, 9-4]

Formal equivalence, as indicated by the last three theorems, is a transitive

relation.

10-69 Ux(<px
=

\l/x) c(<f>xn
= fan); TLx (<px

=
\f/x) c(JI<f>x

= H^a:); and

Hx(<px
= fa) c(2<px = 2fa).

[2-2, 10-61-62- 63]
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10-691

[3-2, 10-23]

If we wish to investigate the propositions which can be formed from

functions of the type of (<px x^y) and (<px + \f/y), where the range of sig-

nificance of <px may differ from that of ^y, we find that these will involve

two operators SJIj/^r; \f/y), Ily2 x (<px; \l/y], etc. And these are special

cases of a function of two variables, (tpxx^y) and (ipx + \f/y) are special

cases of (x, y). Hence we must first investigate functions of two variables

in general.

III. PROPOSITIONAL FUNCTIONS OF Two OR MORE VARIABLES

A prepositional function of two variables, <p(x, y), gives the derivative

propositions <p(xm , yn}, ILx <p(x, yn), 2x2y <f>(x, y), 2 vnx <p(x, y), etc. The

range of significance of <p(x, y) will comprise all the pairs (x, y) such that

<p(x, y} is either true or false. We here conceive of a class of individuals,

#1, #2, x s , etc., and a class of individuals, yi, y^, ys , etc., such that for any

one of the x's and any one of the y's, <p(x, y) is either true or false.

As has already been pointed out, the function may be such that the

class of values of x is the same as the class of values of y, or the values of x

may be distinct from the values of y. If, for example, <p(x, y) be "x is

brother of y", the class of x's for which <p(x, y) is significant consists of

identically the same members as the class of y's for which <p(x, y) is sig-

nificant. 9 In such a case, the range of significance of <p(x, y) is the class of

all the ordered couples which can be formed by combining any member of

the class with itself or with any other. Thus if the members of such a

class be a\, a^, a3 , etc., the class of couples in question will be10

(ai, o.i), (ai, rz 2 ), (i, a 3),

(a2 , ai), (a2 , a,), (02, a 8), ...

(o3 , ai), (a 3 ,
a 2 ), (a3 ,

a 3), ...

. . . Etc., etc.

But if <p(x, y) represent "a: is a citizen of y", or "a: is a proposition about

y", or "x is a member of the class y", the class of x's and the class of y's

for which <p(x, y) is significant will be mutually exclusive.

9 Presuming that "A is brother of A "
is significant i. e., false.

10 Schroder treats all relatives as derived from such a class of ordered couples. (See

Alg. Log., in, first three chapters.) But this is an unnecessary restriction of the logic of

relatives.
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Although <f>(x, y) represents some relation of x and y, it does not neces-

sarily represent any relation of the algebra, such as x cy or x =
y; and it

cannot represent relations which are not assertable.

<P(XI, y), <p(x*, y), etc., are prepositional functions of one variable, y.

Hence Uy <f>(xi, y),.Uy <p(x^, y), 2y <p(xi, y), etc., are propositions, the meaning

and properties of which follow from preceding definitions and theorems.

And H.y <f>(x, y), 2 y <p(x, y}, IIx <p(x, y}, and 2x <p(x, y) are prepositional

functions of one variable. We can, then, define propositions involving

two variables and two operators, as follows:

11-01 njI^Gr, y)
= Ux {U s <p(x, y)}. Def.

11-02 ZJI^Gc, T/)
= 2x {nv <p(x, y}}. Def.

1 1 03 nzS y <p(x, y)
= IT* { 2, <p(x, y) } . Def.

1 1 04 SxS tf <p(x, y}
= Zx { S, v(x, y} }

. Def.

It will be seen from these definitions that our explanation of the range

of significance of functions of twro variables was not strictly required; it

follows from the explanation for functions of one variable. The same con-

vention regarding the number of values of variables and interpretation of

the propositions is also extended from the theory of functions of one

variable to the theory of functions of two.

(Where the first variable has a subscript, the comma between the two

will be omitted: <p(xjy) is <p(x z , y), etc.)

Since Hy <p(x, y) is a prepositional function of one variable, x, the defini-

tion, 10-02, gives us

UzUy <p(x, y)
= Ux {Uy <p(x, y}}

= U.y <p(x<y) xUy <p(x*y) xUy <p(x sy) x . . .

And the expansion of this last expression, again by 10-02, is

x
{ <p(x 2yi) x <p(xtyd x ^(x^ys) x . . .

x
{ <p(x$yi) x <p(x 3y) x <p(x sy s)

x . . .

x ... Etc., etc.

And similarly, by 10-01,

2xUy <p(x, y)
= 2 t {ny <p(x, y)}

= Uy <f>(xiy) + tty <p(x zy

And the expansion of the last expression, by 10 02, is

x <pxiy x <pxiy x

+
{ <p(x 2yi) x <p(xzyi} x ^(^2^/3) x

+
{ <p(x3yi) x v(x3y2) x <p(x syz) x

+ . . . Etc., etc.
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Or, in general, any prepositional function with two operators is expanded

into a two-dimensional array of propositions as follows:

(1) The operator nearest the function indicates the relation (+ or x)

between the constituents in each line.

(2) The subscript of the operator nearest the function indicates the

letter which varies within the lines.

(3) The operator to the left indicates the relation (
+ or x ) between

each two lines.

(4) The subscript of the operator to the left indicates the letter which

varies from line to line.

Some caution must be exercised in interpreting such propositions as

2x1Iv <p(x, y), etc. It is usually sufficient to read S^IIj, "For some x and

every y", but strictly it should be "For some x, every y is such that".

Thus 2 xIIj, <>(#, y} should be "For some x, every y is such that <p(x, y} is

true". And Hy2x <f>(x, y) should be "For every y, some x is such that

<p(x,y) is true". The two here chosen illustrate the necessity of caution,

which may be made clear as follows:

That is, 2xILy <f>(x, y} means "Either for x\ and every y, <p(x, y} is true,

or for xi and every y, <p(x, y) is true, or for x s and every y, <p(x, y) is true,

... or for some other particular x and every y, <p(x, y) is true". On the

other hand,

Uy2x <p(x, y}
= ?x <p(x, y^ xZI<P (.r, ?/ 2) xS x <p(.r, 7/ 3)

* . . .

That is, Uy'Zx^x, y} means "For some x and yi, <p(x, i/) is true, and for

some x and y?, <p(x, y) is true, and for some x and y s , <p(x, y) is true, and

. . ."; or "Given any y, there is one x (at least) such that <p(x, ?/) is true".

The following illustration of the difference of these twyo is given in Principia

Mathematical u Let <p(x, y} be the prepositional function "If y is a proper

fraction, then x is a proper fraction greater than y". Then for all values

of y, we have 2x <p(x, yn), so that ~n.yZ,x <p(x, y) is satisfied. In fact, H^x (p(x,y)

expresses the proposition: "If y is a proper fraction, then there is always

a proper fraction greater than y". But 2xIIv <f>(x, y) expresses the propo-

sition: "There is a proper fraction which is greater than any proper frac-

tion ", which is false.

In this example, if we should read SJTy "For some x and every y";
11 See i, p. 161.
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IlySi "For every y and some x", we should make equivalent these two

very different propositions. But cases where this caution is required are

infrequent, as we shall see.

Where both operators are II or both S, the two-dimensional array of

propositions can be turned into a one-dimensional array, since every rela-

tion throughout wr
ill be in the one case x

,
in the other +

,
and both of

these are associative and commutative. It follows from our discussion of

the range of significance of a function of two variables that any such func-

tion, <p(x, y), may be treated as a function of the single variable, the ordered

couple, (x, y). Hence we can make the further conventions:

11-05 2x2y <p(x, y)
= S (x , y} <p(x, y)

= Sx , y <p(x, y).

11-06 Uxny <p(x, y)
= n (l> V)<f>(x, y)

= Iix , y <p(x, y}.

The second half of each of these serves merely to simplify notation.

11-07 If x r and y s be any values of x and y, respectively, in <p(x, y), there

is a value of (x, y) say, (x, y) n such that v(x, y) n = v(x ry s}.

11-05 and 11-06 could be derived from 11-07, but the process is tedious,

and since our interest in such a derivation would be purely incidental,

we prefer to set down all three as assumptions.

If we wish to identify a given constituent of SZ) y <p(x, y) with a con-

stituent of 2x '2y(p(x, y), some convention of the order of terms in Sz> y <p(x, y)

is required, because if the order of constituents in ^x '2y (p(x, y} be unaltered,

this identification will be impossible unless the number of values of y is

determined which, by our convention, need not be the case. Hence we

make, concerning the order of terms in Sz , y <p(x, y), the following conven-

tion : (f(xmyn) precedes <p(xrys) ifm + ra<r+, and where m + n = r + s,

if n < s. Thus the order of terms in 2X , y <p(x, y} will be

This arrangement determines an order independent of the number of values

of x, or of y, so that the equivalent of <p(x, y) n in terms of <p(xry s] can always

be specified.
12 An exactly similar convention is supposed to govern the

arrangement of terms in 11*, y <p(x, y) and their identification with the terms

of Hxlly<p(x; y}. These conventions of order are never required in the

proof of theorems: we note them here only to obviate any theoretical

12 This arrangement turns the two-dimensional array into a one-dimensional by the

familiar device for denumerating the rationals i. e., by proceeding along successive di-

agonals, beginning with the upper left-hand corner.
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objection. The identification of 2x2 v <f>(x, y) with 2X , v <p(x, y), and of

H.xllv (p(x, y) with nx , v <f>(x, y), is of little consequence for the theory of

prepositional functions itself, but it will be of some importance in the theory

of relations which is to be derived from the theory of functions of two or

more variables.

Having now somewhat tediously cleared the ground, we may proceed

to the proof of theorems. Since 2X) y <p(x, y) and Hx , y <p(x, y) may be re-

garded as involving only one variable, (x, y), many theorems here follow

at once from those of the preceding section.

11-1 Sx, y <p(x, y)
= 2t2 v <p(x, y)

= -HZf v-<p(x, y)
= -{UtUv-<p(x, y)}.

[11-05-06, 10-05]

11-12 Hx , v <p(x, y}
= nxUy <p(x, y}

= -SXf v-<p(x, y}
= -{^x^ y-<p(x, y)\.

[11-05-06, 10-04]

11-2 nx , y <p(x, y) c <f>(x, y) n -

[10-2]

11-21 v(x,y} n c*Lx , y <p(x,y}.

[10-21]

11-22 n* f y <p(x, y) c SXf y <p(x, y) .

[10-22]

11-23 nx , y <p(x, y} is equivalent to "Whatever value of (x, y}, in <p(x, y),

(x, y) n may be, <p(x, y) n ".

[10-23]

11-24 Uxllv <p(x, y) is equivalent to "Whatever values of x and y, in

<p(x, y), x, and y, may be, <p(xry ty.

[10-23] njlv <p(, y) is equivalent to "Whatever value of x, in

Hv <f>(x, y), x r may be, Uy <f>(x ry)". And Hy <p(x ry) is equivalent to

"Whatever value of y, in <p(x,y), y s may be, <p(xry s}". But [11-01]

the values of x in T\y (p(xry) are the values of x in <p(x, y). Hence

Q.E.D.

11-25 "Whatever value of (x,y), in <p(x,y), (x,y} n may be, <p(x, y) n
"

is equivalent to "Whatever values of x and y, in <p(x, y), xr and y s may be,

v(xry.)
"

[11-06-23-24]

1 1 26 nxlly <p(x, y) c Uy <p(xny) .

[11-01, 10-2]
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11-27 UxUy <p(x, y}
= HvUx <p(x, y).

Since x is associative and commutative, Q.E.D.

11-28 2X2^(X y)
= 2v2x <p(x, y}.

Since + is associative and commutative, Q.E.D.

1 1 29 Uxlly <p(x, y} c nx <f>(x, yn) .

[11-26-27]

11-291 Uxny <p(x, y} c <p(x ry t).

[2-2, 11-24]

11-3 IIJIj, <p(x, y) c 2xn tf <p(x, y} .

[11-01, 10-21]

11-31 2JI, <p(x, y} c n,2 x p(ar, y) .

[11-03] UyZx <p(x, y)
=

x

x ... Etc., etc.

Since x is distributive with reference to + ; this expression is equal

to the sum of the products of each column separately, plus the sum

of all the cross-products, that is, to

A +
{ vfayi) x <p(xiyz)

x <p(xiy 3) x . . .
}

+
{ <p(x2yi~) x (f>(x2yz) x

+
{ ^(ar 3yi) x <p(x sy2) x

+ . . . Etc., etc.

where A is the sum of all cross-products.

But [11-02] this is 2xUv <p(x, y) + A.

Hence 2xlly <p(x, y} + A = ILy2 x <p(x, y).

Hence [5-21] 2 xny <p(x, y} cUy^lV (x, y).

We have already called attention to the fact that the implication of 11-31

is not reversible that 2 xlly<f>(x, y} and Hy2 x <p(x, y) are not equivalent.

11-32 Ux2 y <p(x, y} c 2xS^(x, y) .

[11-03] Ux2v <f>(x, y)
=

[11-04] 2*2^(3-, y)
=

And [5-992] ?y <p(xiy) x2^(^22/) x2^(.T 3?/) x

We have also the propositions concerning formal implication where
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functions of two variables are concerned. The formal implication of

t(%, y} by <p(x, y} may be written either Ux , v[<f>(x, y) c $(x, y}} or

HxHv[<f>(x, y) CTJ/(X, y}]. By 11-06, these two are equivalent. We shall

give the theorems only in the first of these forms.

11-4 Ux , y [<p(x, y) c t(x, y)]
= Ilx

, y[-<p(x, y) + t(x, y)]

= nx , v-[<p(x, y) x-^(z, y)].

[10-6]

11-41 II*, v[<p(x, y)cj(x, y)]c[v(x, y} n c^(x, ?/)].

[10-61]

11-411 {Ux , v[<p(x, y) c $(x, y)] x <p(x, y} n ]
c if,(x, y).

[10-611]

11-42 n2 , v[<p(x, y} c f(x, y}] c 2
X) v[<p(x, y) c f(x , y)].

[10-62]

11-43 II*. v[<p(x, y} c f(x, y}] c [n, v <p(x, y} c Ux , rf(x, y}].

[10-63]

11-431 |nlf y[<f>(x, y) c$(x, y}] *UX , v <p(x, y)} cUz , y$(x, y).

[10-631]

11-44 nx , v[<p(x, y} c f(x, y)] c [Sx
, y <f>(x, y) c Sx , vt(x, y)}.

[10-64]

11-441 {II*, v[<p(x, y} c$(x, y}] x2x , y <p(x, y)} c Sx , ^(.T, y).

[10-641]

11-45 {I!*, v[^(o:, y)c$(x, y)] xll*. tf[^(ar, y) cf(a

[10-65]

11-451 n,, [*(*, y)c*(ar,y)]

c {nx , v[^(a;, y) c^fe y)] cnx , y[<t>(x, y} cf(x, y)]}.

[10-651]

11-452 nx , v[i(x,y)ct(x,y)]

c {Ux , y[<p(x, y)ct(x, y)]cUx , v[<p(x, y) cf(x, y)]}.

[10-652]

11-46 nlf y[<p(x, y) c $(x, y}]
= Ux , v[-f(x, y) c-<p(x, y)].

[10-66]

Similarly, we have the theorems concerning the formal equivalence of

functions of two variables.
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11-47 n*. y[v(x, y)
= f(x, y}}

= {Hx , y[<p(x, y) c f(x, y)]

[10-67]

11-48 {n*, v[<p(x, y}
= t(x, y}] *UX , vty(x, y}

=
(x, y)]}

cns , y[<p(x, y)
=

$(x, y)].

[10-68]

11-481 IIx, y[(p(x, y)
= $(x, y}] c {H.x , y[^(x, y}

=
(x, y)]

[10-681]

11-482 nx> v[$(x, y}
= t(x, y)] c |ns , v[<p(x, y)

= $(x, y}]

cllx , y[<p(x, y)
=

{(x,

[10-682]

11-49 n*, y[<p(x, y)
= $(x, y}] c [<p(x, y) n = f(x, y) n]

c[Ux , v <p(x, y}
= Ux

, v$(x, y)]

C [2X , V <P(X, y)
= SZ| vt(x, y)].

[10-69]

11-491 nz , v[<p(x, y}
= $(x, y}]

= Ux , y[-<p(x, y}
= -f(x, y}].

[10-691]

Further propositions concerning functions of two variables are simple

consequences of the above.

The method by which such functions are treated readily extends to

those of three or more variables. <p(x, y, z) may be treated as a function

of three variables, or as a function of one variable, the ordered triad (x, y, z} ;

just as \]/(x, y} can be treated as a function of x and y, or of the ordered

pair (x, y). Strictly, new definitions are required with each extension of

our theory to a larger number of variables, but the method of such extension

will be entirely obvious. For three variables, we should have

SJI^II^OE, y, z}
= sx {nvii,<p(a:, y, z)\

Etc., etc.

It is interesting to note that the most general form for the analogues of

11 -05 and 11-06 will be

n
(z, y , ,) v(x, y, z)

=
IIJIcj,, ,) <p(x, y, z)

and 2 (x , , ,)<p(x, y, z)
= SzS (tff ,)<p(x, y, z)

Since IIJI^, ,)<p(x, y, z)
= n (v , ,)<?(&#, 2) xn (v , *)<p(x2y, z) xn (v , ,)<f>(x ty, z)
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x . . ., and !!(, *)<f>(x ny, 2)
= nyll z <f>(xny, z), etc., we shall be able to deduce

n (l , y, *)>(#, y, 2)
= nxn (lM z) <p(x, y, z)

= n (l , y)n z <p(x, y, z)

= UyU (x , ,)<p(x, y, z)
= UxUuU e (f>(x, y, 2)

And similarly for 2 (x , v , z) . This calls our attention to the fact that <p(x,

y, z) can be treated not only as a function of three variables or as a function

of one, but also as a function of two, x and (y, 2) or (x, y) and 2 or (x, 2)

and y.

In general, the conventions of notation being extended to functions of

any number of variables, in the obvious way, the analogues of preceding

theorems for functions of two will follow.

We failed to treat of such expressions as U<px xrty?/, I,<f>x + Il\f/y, etc.,

under the head of functions of one variable. The reason for this omission

was that such expressions find their significant equivalents in propositions

of the type nxlly(<f>x x^y}, 2xny (<f>x + -tyy), etc., and these are special cases

of functions of two variables. We may also remind the reader of the

difference between two such expressions as II <px + Ity.r and n <px + U\f/y.

The ranges of the two functions, v and \l/, need not be identical; there

may be values of x in <px which are not values of y in -fyy. But in any

expression of the form <pxn x \f/xn , xn as a value of x in <px must be identical

with xn as a value of x in \f/x. For this reason, we have adopted the con-

vention that where the same letter is used for the variable in two related

functions, these functions have the same range. Hence the case where

we have <px and \f/y is the more general case, in which the functions are not

restricted to the same range. Theorems involving functions of this type

will not always be significant for every choice of <p and \l/. There may even

be cases in which an implication is not significant though its hypothesis is

significant. But for whatever functions such theorems are significant,

they will be true; they will never be false for any functions, however chosen.

The meaning of an expression such as 2xHy ( <px + \f/y} follows from the

definition of 2xTlv <p(x, y).

=
{ ( <f>Xl + ^l) X ( <PX\ + ^2) X

+
{ (tpXt + ^0 X (<px* + ^2) X (<pX2 +

+
{ ( <px 3 + tyi) x

( <px 3 + tyz) x (<px + ty*> x . . .
}

+ . . . Etc., etc.

And for any such expression with two operators we have the same type of
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two-dimensional array as for a function of two variables in general. The

only difference is that here the function itself has a special form, <px + \{/y

or ipx x \f/y, etc.

12-1 U<px *U\l/y =
U\f/y xU<px = UxILv (<px x^y) = TLJly(^y x <px)

= Uynx (<px x^y) = nyttx(ty x <px)>

(1) [1-3] n<px*nty = n^xn^x.
(2) II <px x Uif/y

=
( pxi x <px 2 * <f>Xs x . . . )

x Ti-^y

=
(<pxj. x Ityy) x Oz2 x Ityy) x (^.T 3 x ityy) x ...

[5-98]

^) x... [10-371]

. [ii-oi]

(3) By (2) and 1-3,

II <px x U\l/y
=

(Tl\f/y
x

x n
tf (^2/ x

x n
tf(^ x pz 3)

x . . . [10-37]

). [ii-oi]

(4) Similarly, n^ xll^a; =
IIj/
nz (i/'?/

x ^x) = UyUx (<px x^?/).

"
^a; is true for every x and \l/y is true for every y" is equivalent to "For

every x and every y, ipx and ^T/ are both true", etc.

12-2 2<px + 2$y = ?ty +2<px = SxS y ( <px + ty) = 2x2 y (if<y + <px)

(1) [4-3]

(2) I,<px

Si/'?/) + . . .

[5-981]

ty)+ ... [10-31]

= S,2,,(*a + ^). [11-04]

(3) By (2) and 4 -3,

... [10-3]

= 2^^+^). [11-04]

(4) Similarly, S^y+S^c = SyS^t/ + ^.T)
= S

J/
Sx (v?.r + ^?/).
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"Either for some x, <px, or for some y, \l/y" is equivalent to "For some

x and some y, either <?x or \l/y", etc.

12-3 SV?.T x Zjy = 2^y x S^z = 2x?v(<px x^) = Vx *L v (ty x ^r)

= 2
tf
2x($r x^y) = SVS*(^2/ x ^r).

(1) [1-3] 2<f>xx2ty = S^yxS^ar.

(2) S #c x 2^y = (<pi + #r2 + v^a + ) x 2^y
x 2^y) + (^ 2 x S^y) + (v?a: 3 x S^y) + . . .

[5-94]

x $y) + Sv (^ 2 x ^y) + S
tf ( ^3 x ty)

+ ... [10-361]

^). [11-04]

(3) By (2) and 1-3,

x 2^7/ = (Z^?/ x ^i) + (S^y x <px 2) + (S^i/ x

. . . [10-36]

. [11-04]

(4) Similarly, 2^1/xS^a: = ^y^ x(^y x ^) = SyS^C^x x^?/).

"For some x, <pz, and for some i/, ^?/" is equivalent to "For some z and

some y, px and ty", etc.

12-4

(1) [4-3]

(2) U<f>x + U\j/y
=

(<pxi x <pxz x (f>x 3 x . . . ) +

x (<px 3 + n^y) x ...

[5-941]

x... [10-371]

[11-01]

(3) By (2) and 4 -3,

Il<px + n^y = (Uty + <pxd x (Uty + <pxd

+ 3 x ...

... [10-37]

r). [11-01]

(4) Similarly, n^y + n^a: = n
1/
III (i/'?/

+ <^.r)
= nyllx (^a: + ^).

"Either for every x, <px, or for every y, \f?y" is equivalent to "For every x
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and every y, either px or \fsy", etc. At first glance this theorem may seem

invalid. One may say: "Suppose <px be 'If a- is a number, it is odd',

and $y be 'If y is a number, it is even'. Then U<f>x + H\l/y will be 'Either-

every number is odd or every number is even', but Hxlly((px + \l/y} will be

'Every number is either odd or even'". The mistake of this supposed

illustration lies in misreading Ilxlly (<f>x + \l/y~). It is legitimate to choose,

as in this case, tpx and \l/y such that their range is identical: but it is not

legitimate to read Uxlly(<px + \l/y] as if each given value of x were connected

with a corresponding value of y. To put it another way: HxTLx (<px + \l/x),

as a special case of Uxny (<px + -^y), would not be "For every value of x,

either <px or \fsx", but would be "For any two values of x, or for any value

of x and itself, either <px or \f/x". Thus TLxTI.y(<px + \f/y) in the supposed

illustration would not be as above, but is in fact "For any pair of numbers,

or for any number and itself, either one is odd or the other is even" so

that Hpx + TL\f/y and ILJI^tpx +
\f/y) would here both be false, and are equiva-

lent.

A somewhat similar caution applies to the interpretation of the next

two theorems. The analogues of these, in <p(x, y}, do not hold.

12-5 Zpx + IIty = U\f/y+2<px = 2xHy(<px + $y) = 2xlly (\l/y + <px)

= Uv2x (<px + \lry)
= Uy^x(^y + <px).

(1) [4-3] 2<px + U\fsy
= H.\f/y+2<px.

(2) By proof similar to (2) in 12-2, S^or + U\l/y
= 2 xUy(<px + ty).

And by proof similar to (3) in 12-2, S<pz + U\f/y
= SJIj,^ + <px).

(3) By proof similar to (2) in 12-4, U\f/y+ 2<px = Uy !,x (\f/y+ <f>x).

And by proof similar to (3) in 12-4, H\f/y + 2<#r = Hv2x(<px + $y).

"Either for some x, <px, or for every y, \fsy" is equivalent to "For some x

and every y, either <px or \{/y", etc.

12-6 I,<px

(1) [1-3]

(2) By proof similar to (2) in 12-3, 2<px xllty = 2xny(<px x^y}.

And by proof similar to (3) in 12-3, S<pz xH\f/y
= '2 xlly(\l/y x <px).

(3) By proof similar to (2) in 12-1, Il^y x2<px = n
!/
2 x (^i/ x <px).

And by proof similar to (3) in 12- 1, H\f/y x?<px = HyZ^px x ^y}.

"For some x, <px, and for every y, \[/y" is equivalent to "For some x and

every y, <px and \f/y", etc.

18
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We may generalize theorems 12-1-12-6 by saying that for functions

of the type ( <px + \l/y) and ( <px x \f/y) the order of operators and of members

in the function is indifferent; and for propositions of the type

n

the operators may be combined, and the functions combined in the relation

between the propositions.

It will be unnecessary to give here the numerous theorems which follow

from 10-5-12-6 by the principles pqcp, pcp + q, and U<f>x c2<px, etc.

For example, 10-51,

II <px x Ufa = Ux ( <px x \f/x)

gives at once

(1)

(2)

(3)

(4)

(5)

(6)

Etc., etc.

And 12-2, 2<px + 2\f/y
= 2x2y (<f>x + ty), etc., gives'

(1)

(2)

(3)

(4) TL+y c

(5)

(6)

Etc., etc.

Another large group of theorems, only a little less obvious, follow from

the combination of H<pxcH<px, or S#rcS#c, with H\!/y c2ij/y, giving

by 5-3,

(1)

(2) IL<pxx H\l/y cll<pxx

(3) S <pa; + Ityi/ c S ipx +

(4) S^cxn^ycS^arx
Etc., etc.

Each of these has a whole set of derivatives in which n <px + H.\I/y is replaced
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by nxnv(^ + ^2/), etc., npa:xS^/ by Ux2 y ((f>x x^/), etc. We give, in

summary form, the derivatives of (2), by way of illustration:

Any one of c any one of

x Hij/y Ii(f>x x ?,\l/y

x ^y) nxSj,( <& x ^y)

x <px) nxs,,(^ x ^)
x pa) Svn*(^ x ^r)

x ^y) synx ( <px x ^/)

x H<px

n <px +

nxll^(^ +
\f/y), etc., etc.

S <px + Si/'?/

SS2V(^ + ^i/), etc., etc.

n .pa: + s^?/

Ux '2v (<(>x + $y), etc., etc.

This table summarizes one hundred fifty-six theorems, and these are only a

portion of those to be got by such procedures.

Functions of the type of (<pxx$y} and (<px + $y) give four different

kinds of implication relation: (1) Hxlly(<px c^/); (2) niS J/ (^a: c^?/);

(3) 2,xlly(<f>x c\f/y)-, and (4) SxS,,(^a; c^y). With the exception of the

first, these relations are unfamiliar as "implications", though all of them

could be illustrated from the field of mathematics. Nor are they par-

ticularly useful: the results to be obtained by their use can always be got

by means of material implications or formal implications. Perhaps

Uxny ((px c \l/y] is of sufficient interest for us to give its elementary properties.

12-7 nzny ( <px c ^) c ( ex* c

[ii-oi] nxny(^c

x...

... [10-42]

And this last expression is equivalent to the set

<pxi c ll\f/y, <px2 c U\l/y, <px 3 c U\{/y, etc.

12-71
{
nzn,,( <pxcty)x <pxn }

c

[9-4, 12-7]
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If for every x and every y, <?x implies ty, and for some given x, <px is true,

then $y is true for every y.

12-72 Uxllv(<pxc^y) = Z^rcltyi/ = U-<f>x + H\l/y.

(1) If UMvxcty), then [12-7] <pxn cUty.

Hence [5-991] 2<pxcUty.

And if 2<f>xcU\l/y, then [10-42] Uv(2 <px c fy) , and hence [10-41]

(2) [9-3]

nznv(v*c c^) is equivalent to "If there is some x for which <po: is true,

then \f/y is true for every y".

12-73 (njI^zc^xIIjU^cfz)} cIUI zOzcfz).

[12-72] If njlj/^rc^?/) and Uyll z(^y cfz), then S^ccH^y
and 2^y c Hfiz.

But [10-21] UtycZifsy. Hence [5-1] S^cHfz, and [12-72]

This implication relation is here demonstrated to be transitive. In fact,

it is, so to speak, more than transitive, as the next theorem shows.

12-74
{ (S <px c Z^) xUU z(ty c fz) }

c n2n z ( pz c fz).

[12-72] n,,n,(^cfz) = Z^cHfz.
And [5-1] if Z^c c S^y and Z^y cHfz, then Z^c cHfz, and [12-72]

12-75 {IUI,,(v*r

[12-72] nxnv

And [5-1] if Z^r c n^y and Ilty c n^z, then S^a: c Ilfz, and [12-72]

nsn z (^a: cfz).

IV. DERIVATION OF THE LOGIC OF CLASSES FROM THE CALCULUS OF

PROPOSITIONAL FUNCTIONS

The logic of classes and the logic of relations can both be derived from

the logic of prepositional functions. In the present chapter, we have

begun with a calculus of propositions, the Two-Valued Algebra, which

includes all the theorems of the Boole-Schroder Algebra, giving these

theorems the prepositional interpretation. We have proved that, con-

sidered as belonging to the calculus of propositions, these theorems can

validly be given the completely symbolic form: "If . . . , then ..."
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being replaced by ". . . c . . . ", ". . . is equivalent to . . .

"
by ". . .

=
. . . ", etc. The Two-Valued Algebra does not presuppose the Boole-

Schroder Algebra; it simply includes it.

Suppose, then, we make the calculus of propositions the Two-Valued

Algebra our fundamental branch of symbolic logic. We derive from it

the calculus of prepositional functions by the methods of the last two>

sections. We may then further derive the calculus of logical classes, and a

calculus of relations, by methods which are to be outlined in this section

and the next.

The present section will not develop the logic of classes, but will present

the method of this development, and prove the possibility and adequacy

of it. At the same time, certain differences will be pointed out between

the calculus of classes as derived from that of prepositional functions and

the Boole-Schroder Algebra considered as a logic of classes. In order to

distinguish class-symbols from the variables, x, y, z, in prepositional func-

tions, we shall here represent classes by a, /3, 7, etc.

For the derivation of the logic of classes from that of propositional

functions, a given class is conceived as the aggregate of individuals for

which some propositional function is true. If <pxn represent "x is a man",
then the aggregate of x's for which <px is true will constitute the class of

men. If, then, z(<pz) represent the aggregate of individuals for which the

propositional function <pz is true, z(<pz) will be "the class determined by
the function <pz", or "the class determined by the possession of the char-

acter <p".
ls We can use a, j8, 7, as an abbreviation for z(<pz), z(\l/z), z(z),

etc. a =
z(<pz) will mean "a is the class determined by the function <pz".

(In this connection, we should remember that <px and <pz are the same

function.)

The relation of an individual member of a class to the class itself will

be symbolized by c. xn e a represents "xn is a member of a" or briefly

"xn is an a". This relation can be defined.

13 We here borrow the notation of Principia. The corresponding notation of Peirce

and Schroder involves the use of S, which is most confusing, because this S has a meaning
entirely different from the S which is an operator of a propositional function. But in

Principia, z(<pz) does not represent an aggregate of individuals; it represents "z such

that <f>z". And z(<pz) is not a primitive idea but a notation supported by an elaborate

theory. Our procedure above is inelegant and theoretically objectionable: we adopt it

because our purpose here is expository only, and the working out of an elaborate technique
would impede the exposition and very likely confuse the reader. As a fact, a more satis-

factory theory on this point makes no important difference.
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13-01 xn i&(<pz) =
<pxn Def.

"xn is a member of the class determined by <pz" is equivalent to
"

<pxn is

true".

(For convenience of reference, we continue to give each definition and

theorem a number.)

The relation "a is contained in 0" is' the relation of the class a to the

class when every member of a is a member of also. We shall symbolize

"a is contained in
"
by a c 0. The sign c between a and 0, or between

z(<pz) and 2(^2), will be "is contained in"; c between propositions will

be "implies ", as before. xn e a is, of course, a proposition; x e a, a propo-

sitional function.

13-02 a c = Ilx(x a c x 0) Def.

a c is equivalent to "For every x, 'a: is an a' implies 'x is a 0'".

Hx(x e a c x e 0) is a formal implication. It will appear, as we proceed

that the logic of classes is the logic of the formal implications and formal

equivalences which obtain between the propositional functions which deter-

mine the classes.

13-03 (a =
j8)

= Ux(x e a = x e 0) Def.

a = is equivalent to "For every x, 'x is a member of a' is equivalent

to 'x is a member of /3'". a = thus represents the fact that a and

have the same extension i. e., consist of identical members.

xn e a, a c 0, and a =
/3 are assertable relations propositions. But

the logical product of two classes, and the logical sum, are not assertable

relations. They are, consequently, defined not by means of propositions

but by means of functions.

.13-04 ax/3 = {(xct) x (x e 0)} Def.

The product of two classes, a and 0, is the class of x's determined by the

propositional function "x is an a and x is a 0". The class of the x's for

which this is true constitute a x 0, the class of those things which are

both a's and 0's.

The relation x between a and is, of course, a different relation from x

between propositions or between propositional functions. A similar remark

applies to the use of +
, which will represent the logical sum of two classes,

as well as of two propositions or propositional functions. This double

use of symbols will cause no confusion if it be remembered that a and 0,

z(<pz~) and 2(^-2), etc., are classes, while a: e a is a propositional function,

and xn e a, a c 0, and a =. are propositions.
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13-05 a + ft
= x{(x e a) + (x e ft)} Def.

The sum of two classes, a and ft, is the class of x's such that at least one

of the two,
(

x is an a' and 'x is a ft', is true, or loosely, the class of x's

such that either x is an a or x is a ft.

The negative of a class can be similarly defined:

13-06 -a = x-(xea) Def.

The negative of a is the class of x's for which 'x is an
'

is false.

The "universe of discourse", 1, may be defined by the device of selecting

some propositional function which is true for all values of the variable.

Such a function is (x cfaj), whatever propositional function $x may be.

13-07 1 = x($xc$x) Def.

1 is the class of x's for which x implies x.u Since this is always true, 1 is

the class of all x's. The "null-class", 0, will be the negative of 1.

13-08 = -1 Def.

That is, by 13-06, = x -(x c x), and since -(fzcfz) is false for all

values of x, the class of such x's will be a class with no members.

Suppose that a =
z(<pz) and ft

=
z($z). Then, by 13-01, xn e a =

<pxn .

Hence a c ft will be Hx (<p% c \f/x), and a =
ft will be Iix(<px \f/x). This

establishes at once the connection between the assertable relations of

classes and formal implication and equivalence. To illustrate the way in

which this connection enables us to derive the logic of classes from that of

propositional functions, we shall prove a number of typical theorems.

It will be convenient to assume for the whole set of theorems:

a =
z(<pz), ft

= z($z), 7 = $(&)

13-1 = &-($xc$x).

= -1. Hence [13-06] = x -(x el).

[13 01 07] x e 1 = x c x. Hence = x -(fa; c fc) .

13-2 Ux(xel).

[13-01-06] Xn tl = (frnCfrJ.

Hence Ilx(x e 1)
= Ux(x cx).

But [2-2] xn cxn . Hence [10-23] TLx ($x cfa:).

Every individual thing is a member of the "universe of discourse".

14 This defines, not the universe of discourse, but "universe of discourse", the range
of significance of the chosen function, f . With 1 so denned, propositions which involve

the classes (<t>z), z(\j/z), etc., and 1, will be significant whenever <p, \l/, etc., and f have

the same range, and true if significant.



264 A Survey of Symbolic Logic

13-3 nx -(zeO).

[1$-01 -06 -07] zn cO = -(r**cfa:).

Hence [3-2] -(zn eO) = (r*cfa:B).

But fzn c fa;n . Hence [10 23] Ux(fx c fx), and Hz -(z e 0).

For every x, it is false that x c no individual is a member of the null-

class.

13-4 cl.

[13-01-06] xn el = ({XnCtxJ.

Since a =
z(<pz), [13-01] xn e a =

<pxn .

[9-33] (ranCfSn) C[^n C(fZn CrSw)].

Hence since rn c rn , ^n c (xn c fzn).

Hence [10-23] nx[^r c(fx cfa)], and [13-2] ad.

Any class, a, is contained in the universe of discourse. It will be noted

(13-2 and 13-4) that individuals are members of 1, classes are contained in 1.

In the proof of 13-4, we make use of 9-33, "A true proposition is implied

by any proposition ". xn c xn is true. Hence it is implied by <pxn . And

since this holds, whatever value of x, xn may be, therefore,

But <px is the function which determines the class a; x cx, the function

which determines 1. Hence <pxn is xn t a, and xn cxn is xn c 1. Conse-

quently we have IIX (x e a ex el). And by the definition of the relation

"is contained in", this is a c 1.

13-5 Oca.

[9 1] -(# e 0) is equivalent to (xn e 0) =0.

Hence [13-3] (xn c 0) =0, and [9-32] (xn c 0) c <pxn .

Hence [13-01] xn c c.rn c a, and [10-23] Ux(x t ex e a).

Hence [13-02] c a.

The null-class is contained in every class, a. In this proof, we use 9-32,

"A false proposition implies any proposition". -(f.rn cfa:n) is false, and

hence implies <p.rn . But ~(fxcx) is the function which determines 0;

and <px, the function which determines a. Hence c a.

The proofs of the five theorems just given are fairly typical of those

which involve and 1. But the great body of propositions make more

direct use of the connection between the relations of classes and formal

implications or equivalences. This connection may be illustrated by the

following:
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13-6 z(<pz) c 2(^2) = Hx (<f>x c^ar).

[13-02] 2(^2) cz(^z) = IIx [ar e 2(>2) ex e 2(^2)].

[13-01] arn e z(<pz)
=

<pxn, and arn e 2(1^2)
=

^arn .

Hence [2-1] Hx[x e 2(^2) car c 2(^2)] = Hx(<px c ^ar).

"The class determined by #s is contained in the class determined by ^2"

is equivalent to "For every x, <f>x implies \f/x".

[13-03] [2(>2) =
2(^2)]

= IIx[ar e z(<pz)
= x e 2(^2)].

'[lo"Ulj ar ra 2^^>2j
== <pXn }

and xn c z\y/z)
==

\f/xn *

Hence Ux[x e 2(^2) = x e 2(^2)] = IIx(^a:
= ^x).

' "The class determined by tpz is equivalent to the class determined by ^2"

is equivalent to "For every x, <px is equivalent to \j/x".

13-8 (a c
|8)

=
(-|8 c-a).

[10-66] Hx [a: e 2(^2) car e 2(^2)]
= Ux {-[x e 2(^2)] c-[ar e 2(^2)]}.

Hence nx (a; e a ex e |8)
= Hx[-(x e |8) c-(ar c a)].

[13-01-06] -(x e a) = xe -a, and -(ar e 0) = z e -j8.

Hence [13-02] (c/3) = (-/Sc-a).

[13-6] (a c
j3)

= nx (^>a: c^x), (/3 c 7) = nx (^a: c far), and (a c 7)

= nx (<p c far).

And [10-65] [IIx (^ar c ^ar) x nx (i^ar c far)] c nx (^>ar c far).

The relation "is contained in" is transitive. 13-9 is the first form of the

syllogism in Barbara. The second form is:

13-91 [(a c 8) x (arn e a)] c (ar e fi).

[13-6] (aCjS) = nx (<par c^ar).

[13-01] (xn ca) =
<pxn, and (xn e /3)

=
^ar re .

And [10-611] [nx(^ar c^ar) x ^arn] c^arn .

If the class a is contained in the class /3, and a: re is a member of a, then arn

is a member of /3.

13-92 [(a = /3)
x (/3

=
7)] c (a =

7).

(a = 7) = nx (^ar
=

far).

And [10-68] [nx (<par
=

^ar) xnx (^ar
=

far)] cnx(^>x
=

far).

The last three theorems illustrate particularly well the direct connection
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between formal implications and the relations of classes. 13-6 and 13-7

are alternative definitions of a c /3 and a =
/3. Similar alternative defini-

tions of the other relations would be :

16

We may give one theorem* especially to exemplify the way in which

every proposition of the Two-Valued Algebra, since it gives, by 10-23, a

formal implication or equivalence, gives a corresponding proposition con-

cerning classes. We choose for this example the Law of Absorption.

13-92 [a+(aX/3)] = a.

[13-04-05] [a+(aXj8)] = x{(xea) + [(xta) x(.re/3)]}.

Hence [13-01] [xn e [a+ (a x/3)]}

=
{ (* e a) + [(z e a) x(arn ej8)]}. (1)

But [13-03] {[a+(ax|8)] = a}

= IIxC{(a;e a) +[() x(a?e/S)])
= (zea)]. (2)

But [13-01] (xn e a) =
<pzn , (a;B e 0) = fe, and by (2),

{[a+ (a Xj8)] = a} = na {[$sr + (<px x

But [5-4] [$ + (0tfx#eB)]

Hence [10-23] Ux {[<px + (<?x

All but the last two lines of this proof are concerned with
establishing

the connection between [a + (a x/3)] = and the formal equivalence

Once this connection is made, we take that theorem of the Two-Valued

Algebra which corresponds to [a + (a x /3)]
= a, namely 5-4, (p + p q)

=
p,

substitute in it <pxn for p and \f/xn for q, and then generalize, by 10-23, to

the formal equivalence which gives the proof. An exactly similar pro-

cedure will give, for most theorems of the Two-Valued Algebra, a corre-

sponding theorem of the calculus of classes. The exceptions are such

propositions as p = (p = 1), which unite an element p with an implication

or an equivalence. In other words, every theorem concerning classes can

be derived from its analogue in the Two-Valued Algebra.

We may conclude our discussion of the derivation of the logic of classes

15 As a fact, these definitions would be much more convenient for us, but we have

chosen to give them in a form exactly analogous to the corresponding definitions of Prin~

cipia (see i, p. 217).
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from the logic of prepositional functions by deriving the set of postulates

for the Boole-Schroder Algebra given in Chapter II. This will prove that,

beginning with the Two-Valued Algebra, as a calculus of propositions, the

calculus of classes may be derived. This procedure may have the appear-

ance of circularity, since in Section I of this chapter we presumed the

propositions of the Boole-Schroder Algebra without repeating them. But

the circularity is apparent only, since the Two-Valued Algebra is a distinct

system.

The postulates of Chapter II, in a form consonant with our present

notation, can be proved so far as these postulates express symbolic laws.

The postulates of the existence, in the system, of -a when a. exists, of a x /3

when a and /3 exist, and of the class 0, must be supposed satisfied by the

fact that we have exhibited, in their definitions, the logical functions which

determine a x /3, -a, and O. 16

14-2 (a xa) = a.

[13-01] xn e a =
<pxn .

Hence [13-04] xn e (a x a) =
[(xn e a) x (xn e a)]

=
(<pxn x <pxn}.

Hence [13-03] [(a Xct) =
a]

= Hx {[x e (a x a)]
= x e a}

= nx[(<f>x x <px)
=

<px].

But [1-2] (<pxn x tpxn)
=

<pxn .

Hence [10-23] Ux[(<px x <px)
=

<px].

14-3 (aX/3) = (0x).

[13-03] [(ax/3) =
(/3 x a)]

= Ux {(x t (a x 0)]
=

[s e (/3xa)]}

= n*{[(zea) x(ajj8)] = [(x e /3) x(sea)]}.

[13-01-04]

Hence [13-01] [(ax0) = 08 x a)]
= ns[(#rx#c) = (#e x <px)].

But [1-3] (<pxn x\l/Xn)
= (txn x<pXn).

Hence [10-23] ttx[(<px x^z) = (# x <px)].

14-4 (aX|8) X T = a x (,3x7).

[13-03] [(ax/3) x 7 = ax(/3x 7)]
=

= n.CJOJeKaX^XT]} = (ze [ax 03X7)]}]

[13-01-04]

Hence [13-01] [(ax/3) x 7 = a x (18x7)]

= Hx {[(<f>x x #r) x ^] =
[^.r x (^

16 A more satisfactory derivation of these existence postulates is possible when the

theory of prepositional functions is treated in greater detail. See Prindpia, I, pp. 217-18.
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But [1-04] (<pxn x fan) x &rn = <pxn x (fan x &rn).

Hence [10-23] n*{[(?o: x#r) xfcr]
= [#r x(#e x{a:)]}.

14-5 axO = 0.

[13-1-01] x n tO = -(fo-nCfav).

[13-03-04] [axO =
0]
= nx {[(a:n ea)x(.rn eO)] =

(z n eO)}

= II.{[*ax-(fa:cfaO] =
-(fa; c far) }

. [13-01]

But [2-2, 9-01] (f.rn cfzn)
=

1, and [3-2] -(fzn cfzn)
= 0.

Hence [1-5] [<pxn x-(fzB cfa;n)] = =
-(fajB cfa:).

Hence [10-23] nx {[^ x-(fz cfar)]
= ~(fxcfx)}.

0, in the fourth and fifth lines of the above proof, is the of the Two-Valued

Algebra, not the of the calculus of classes. Since the general method of

these proofs will now be clear, the remaining demonstrations can be some-

what abbreviated.

14-61 [(aX-0) = 0]c[(ax0) = a].

[13 -01 -02 -04 -06] The theorem is equivalent to

n*{[(#e x-^ar) =
(a: e 0)] c [(<px x^c) =

<px]}

But [13-3] Ux -(x e 0), and hence [9-1] Ux[(x 0)
=

0].

Hence the theorem is equivalent to

nx {[(#r x-#c) = (x eQ)]c[(<pxx\l/x') =
<px]}

But [13-3] na -(areO), and hence [9-1] Ux[(xeO) =
0].

Hence the theorem is equivalent to

TLx {[(<px x-\frx)
= 0]c[(v?a:x^) =

<px]}

But [1-61] [(<pxn x -^n) =
0] c[(^o;n x^xn)

=
<pxn].

HenceJlO-23] Q.E.D.

14-62 {[(ax/8) = a] x[(x-/3) = a]} c (a = 0).

The theorem is equivalent to

n*[{[(#cx#c) = ^]x[(^x-^) =
<px]} c[<px = (a?0)]J

But [13-3, 9-1] lUfreO) =
0].

Hence the theorem is equivalent to,

nx [{[(v5# x^ar) = <p] x[(^?a: x-^ar) = ^x]} c(<px = 0)]

But [1-62] {[(* X#CB)
= ^n] x[(^cn x-^.rn)

= ^ar]} c(^n
=

0).

Hence [10-23] Q.E.D.

The definition, 1 = -0, follows readily from the definition given of in

this section. The other two definitions of Chapter II are derived as follows:

14-8 (a+/3) = -(-ax-j8).

The theorem is equivalent to Ux[(<px + fa) = -(-<px x-^ar)].
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But [1-8] (<pxn + txn )
= -(-^n x-^zn).

Hence [10-23] Q.E.D.

14-9 (aC(8) = [(ax/3) -
a].

The theorem is equivalent to Ux (<px c\l/x)
= Hz[(<px x\l/x)

=
<px].

But [1-9] (<f>xn cipXn) is equivalent to [(<pxn x\f/Xn)
=

<pxn].

Hence [10-23-69] Q.E.D.

Since the postulates and definitions of the calculus of classes can be

deduced from the theorems of the calculus of prepositional functions, it

follows that the whole system of the logic of classes can be so deduced.

The important differences between the calculus of classes so derived and

the Boole-Schroder Algebra, as a logic of classes, are two: (1) The Boole-

Schroder Algebra lacks the e-relation, and is thus defective in application,

since it cannot distinguish the relation of an individual to the class of

which it is a member from the relation of two classes one of which is con-

tained in the other; (2) The theorems of the Boole-Schroder Algebra

cannot validly be given the completely symbolic form, while those of the

calculus of classes derived from the calculus of prepositional functions can

be given this form.17

V. THE LOGIC OF RELATIONS

The logic of relations is derived from the theory of propositional func-

tions of two or more variables, just as the logic of classes may be based

upon the theory of propositional functions of one variable.

A relation, R, is determined in extension when we logically exhibit the

class of all the couples (x, y) such that x has the relation R to y. If <p(x, y)

represent "x is parent of ?/", then x y[<p(x, y)] is the relation "parent of".

This defines the relation in extension: just as the extension of "red" is

the class of all those things which have the property of being red, so the

extension of the relation "parent of" is the class of all the parent-child

couples in the universe. A relation is a property that is common to all the

couples (or triads, etc.) of a certain class; the extension of the relation is,

thus, the class of couples itself. The calculus of relations, like the calculus

of propositions, and of classes, is a calculus of extensions.

-17 Oftentimes, as in Schroder, Alg. Log., I, the relations of propositions in the algebra

of classes have been represented in the symbols of the propositional calculus before that

calculus has been treated otherwise than as an interpretation of the Boole-Schroder Algebra.

But in such a case, if these symbols are regarded as belonging to the system, the procedure
is invalid.
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We assume, then, the idea of relation : the relation R meaning the class

of couples (x, y) such that x has the relation R to y.

R = A y(x R y), S = w z(w S 2), etc.

This notation is simpler and more suggestive than R = A y[<p(x, y)],

S = w z[^(w, 2)], but it means exactly the same thing. A triadic relation,

T, will be such that

T = xyz[T(x,y,z}}

or T is the class of triads (x, y, z) for which the prepositional function

T(x, y, 2) is true. But all relations can be defined as dyadic relations. A
triadic relation can be interpreted as a relation of a dyad to an individual

that is to say, any function of three variables, T(x, y, 2), can be treated as a

function of two variables, the couple (x, y) and 2, or x and the couple (y, 2) .

This follows from the considerations presented in concluding discussion of

the theorems numbered 11-, in section III. 18
Similarly, a tetradic relation

can be treated as a dyadic relation of dyads, and so on. Hence the theory

of dyadic relations is a perfectly general theory.

Definitions exactly analogous to those for classes can be given.

15 -01 (x, y} n e 2 w[R(z, w)] = R(x, y) n . Def.

It is exactly at this point that our theoretical considerations of the equiva-

lence of <f>(x, y) n and v(xr y,} becomes important. For this allows us to

treat R(x, y), or (xRy), as a function of one or of two variables, at will;

and by 11-07, we can give our definition the alternative form:

15 -01 (xm yn}tzw(zRw) = xm R yn . Def.

"The couple (xm yn) belongs to the field, or extension, of the relation deter-

mined by (2 R w)
" means that xm R yn is true.

15-02 RcS = Ilx , y[(x R y) c (x S y)]. Def.

This definition is strictly parallel to 13-02,

(a c /3)
= Tlx (x e a C x e /3)

because, by 15-01, (x R y} is (x, y) e R and (x S y) is (x, y) c S. A similar

remark applies to the remaining definitions.

15-03 (R = S) = Hx , v[(x Ry) = (xS y}]. Def.

R and S are equivalent in extension when, for every x and every y, (x R y)

and (x S y) are equivalent assertions.

18 See above, pp. 253 ff.
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15-04 RxS = xy[(xRy) x(xSy)]. Def.

The logical product of two relations, R and S, is the class of couples (x, y.

such that x has the relation R to y and x has the relation S to y. If R is

"friend of", and S is "colleague of", R x S will be "friend and colleague of")

15-05 R + S = xy[(xRy) + (xSy)]. Def.

The logical sum of two relations, R and S, is the class of couples (x, y) such

that either x has the relation R to y or x has the relation S to y. R + S

will be
"
Either R of or S of".

15-06 -R = xy-(xRy}. Def.

-.R is the relation of x to i/ when a: does not have the relation R to y.

It is important to note that R x S, R + S, and -R are relations : x(R x S)y,

x(R+S)y, and x-Ry are significant assertions.

The "universal-relation" and the "null-relation" are also definable

after the analogy to classes.

15-07 1 = xy[t;(x,y)ct(x,y)}. Def.

x has the universal-relation to y in case there is a function, f, such that

(x, y} c(x, y}, i. e., in case x and y have any relation.

15-08 = -1. Def.

Of course, 0, 1, + and x have different meanings for relations from their

meanings for classes or for propositions. But these different meanings o

0, +
, etc., are strictly analogous.

As was pointed out in Section III of this chapter, for every theorem

involving functions of one variable, there is a similar theorem involving

functions of two variables, due to the fact that a function <p(x, y) may be

regarded as a function of the single variable (x, y). Consequently, for

each theorem of the calculus of classes, there is an exactly corresponding

theorem in the calculus of relations. We may, then, cite as illustrations of

this calculus the analogues of the theorems demonstrated to hold for

classes; and no proofs will here be necessary. These proofs follow from the

theorems of Section III, numbered 11-, exactly as the proofs for classes

are given by the corresponding theorems in Section II, numbered 10 .

15-1 = a0-[f(a?,y)cr(a:,y)].

The null-relation is the relation of x to y when it is false that f (x, y) implies

f (x, y), i. e., when x has no relation to y.
19 Of course, there is no such

(x, y) couple which can significantly be called a couple.

19 As in the case of the 1 and of the class calculus, the 1 and of relations, defined as
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15-2 nx , ,[(*, y) 1].

Every couple is a member of the universe of couples, or has the universal

(dyadic) relation.

15-3 n,, -[(*, y) e 0].

No couple has the null-relation.

15-4 Rcl.

15-5 Ocfl.

Every relation, R, is implied by the null-relation and implies the universal

relation; or, whatever couple (x, y) has the null-relation has also the

relation R, and whatever couple has any relation, R, has also the universal-

relation.

15-6 (flcS) = Hx , y[(xRy-)c(xSy-)].

For relations, R cS is more naturally read
" R implies S" than

" R is con-

tained in S". By 15-6, "R implies S" means "For every x and every y,

if x has the relation R to y, then x has the relation S to y". Or
" R implies

S" means "Every (x, y) couple related by R are also related by S".

15-7 (R = S) = nx , y[(x Ry} = (x S y)}.

Two relations, R and S, are equivalent when the couples related by R are

also related by S, and vice versa (remembering that = is always a reciprocal

relation c).

15-8 (RcS) = (-Sc-fl).

If the relation R implies the relation S, then when S is absent R also will

be absent.

15-9 [(R cS)x(Sc T)] c(Rc T).

The implication of one relation by another is a transitive relation.

15-91 [(R c S) x (xm R yn}} c (arw 8 y.n).

If .R implies /S and a given couple are related by R, then this couple are

related also by S.

15-92 [(R = S) x (S = T)] c(R= T).

The equivalence of relations is transitive.

If it be supposed that the postulates concerning the existence of rela-

tions are satisfied by exhibiting the functions which determine them, then,

we have defined them, are such that propositions involving them are true whenever sig-

nificant, and significant whenever the prepositional functions determining the functions in

question have the same range.
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as in the case of classes, we can derive the postulates (or remaining postu-

lates) for a calculus of relations from the theorems of the calculus of prepo-

sitional functions. The demonstrations would be simply the analogues of

those already given for classes, and may be omitted,

16-2 (RxR) = R.

16-3 (RxS) = (SxK).

16-4 (RxS)xT = Rx(SxT).
16-5 RxQ = 0.

16-61 [(Rx-S) = 0]c[(JRxS) = R].

16-62 {[(flxS) = R] x[(Rx-S) = R]} c (fl
=

0).

16-8 (R + S) = -(-Rx-S).

16-9 (RcS) = [(RxS) = R].

These theorems may also be taken as confirmation of the fact that

the Boole-Schroder Algebra holds for relations. In fact, "calculus of

relations" most frequently means just that the Boole-Schroder Algebra

with the elements, a, b, c, etc., interpreted as relations taken in extension.

So far, the logic of relations is a simple analogue of the logic of classes.

But there are many properties of relations for which classes present no

analogies, and these peculiar properties are most important. In fact,

the logistic development of mathematics, worked out by Peirce, Schroder,

Frege, Peano and his collaborators, and Whitehead and Russell, has de-

pended very largely upon a further study of the logic of relations. While

we can do no more, within reasonable limits, than to suggest the manner

of this development, it seems best that the most important of these proper-

ties of relations should be given in outline. But even this outline cannot

be complete, because the theoretical basis provided by our previous dis-

cussion is not sufficient for completeness.

Every relation, .R, has a converse, R, which can be defined as follows:

17-01 vR = yx(xRy}. Def.

If x has the relation R to y, then y has the converse relation, R, to ar.

It follows at once from the definition of (xmy^) e. R that

xm Ryn = yn *R xm

because (xm R yn) = (xmyn] e R =
(ynxm) e "R = yn *R xm .

The converse of the converse of R is R.

(#) = R
19
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since (#) = xy(y^Rx) = xy(xRy} = R. (This is not a proof:

proof would require that we demonstrate

n,, [(*, y) * w(wfl) =
(x, y) e R]

But it is obvious that such a demonstration may be given. In general,

we shall not pause for proofs here, but merely indicate the method of proof.)

The properties of symmetrical relations follow from the theorems con-

cerning converses. For any symmetrical relation T, T = ^T. The uni-

versal relation, 1, and the null-relation, 0, are both symmetrical:

(x 1 y}
=

[f(.r, y} cf(z, y)]
= 1 =

[f(y, x) cf(y, x)}
=

(y 1 x)

(The "1" in the middle of this 'proof is obviously that of the calculus of

propositions. Similarly for in the next.)

(x y)
= -[$(x, y} c $(X) y}]

= = -[f (y, x) c f (</, x}]
=

(y x)

It is obvious that if two relations are equivalent, their converses will be

equivalent:

(# =
)
= (w# =

wfi[)

Not quite so obvious is the equivalent of (RcS), in terms of R and ^S.

We might expect that (RcS) would give (*S c^>R). Instead we have

(R c S) =
(v/fl c wS)

for (fi c S) = nx , [(* Ry)c(xS y)]
= Iix , y[(y *R .T) c (y wfi )]

= (RcS)
"'Parent of implies 'ancestor of" is equivalent to '"Child of implies

'descendent of".

The converses of compound relations is as folioWT
S:

for x(RxS)y = y(R*S)x =
(y R x} x (y S x} = (x^Ry) x(xSy)

= x(^R x *

If x is employer and exploiter of y, the relation of y to x is "employee of

and exploited by". Similarly

v(R + S) = vR + S

If x is either employer or benefactor of y, the relation of y to x is "either

employee of or benefitted by".

Other important properties of relations concern "relative sums" and
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"relative products". These must be distinguished from the non-relative

sum and product of relations, symbolized by * and x . The non-relative

product of "friend of" and "colleague of" is "friend and colleague of":

their relative product is "friend of a colleague of". Their non-relative

sum is "either friend of or colleague of": their relative sum is "friend of

every non-colleague of ". We shall denote the relative product of R and S

by R |
S, their relative sum by R t S.

17-02 R\8 = xz{2 y[(xRy) x(ySz)]}. Def.

R\S is the relation of the couple (x, z) when for some y, x has the relation

R to y and y has the relation S to z. x is friend of a colleague of z when,

for some y, x is friend of y and y is colleague of z.

17-03 R-tS = xz{Uy[(xRy) + (ySz)]}. Def.

R t S is the relation of x to z when, for every y, either x has the relation

R to y or y has the relation S to z. x is friend of all non-colleagues of z

when, for every y, either x is friend of y or y is colleague of z.

It is noteworthy that neither relative products nor relative sums are

commutative. "Friend of a colleague of" is not "colleague of a friend of".

Nor is "friend of all non-colleagues of" the same as "colleague of all non-

friends of". But both relations are associative.

R\(S\T) = (R\S}\T

for ?x {(wRx} x[x(S T)z}} = 2x {(w Rx) x?y[(x S y} x(y T z)]}

= 2y2x {(wRx)x((xSy)x(yTz)}}
= S,S{[(waOx(a:S30]x(3fr 2)}

= 2y {2x[(wRx)x(xSz)]x(y T z}}

= 2y {(w(RS)y]x(yTz)}

"Friend of a (colleague of a neighbor of)" is "(friend of a colleague) of a

neighbor of".

Similarly, R t (S t T) = (R t S) t T

"Friend of all (non-colleagues of all non-neighbors of)" is "(friend of all

non-colleagues) of all non-neighbors of".

De Morgan's Theorem holds for the negation of relative sums and prod-

ucts.

for -M(x R y) x (y S z)] }
= Uy -[(x Ry)x(yS z)}
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The negative of "friend of a colleague of" is "non-friend of all colleagues

(non-non-colleagues) of ".

Similarly, -(R t S) = -R\-S

The negative of "friend of all non-colleagues of" is "non-friend of a non-

colleague of ".

Converses of relative sums and products are as follows:

for x *(R | S)z
= z(R \ S)x = Sv[(z Ry)x(yS x)]

= Zy((ySx)x(zRy)}

If x is employer of a benefactor of z, then the relation of z to x is "bene-

fitted by an employee of".

Similarly, (R t S) = *S t ~R

If x is hater of all non-helpers of z, the relation of z to x is
"
helped by all

who are not hated by".

The relation of relative product is distributive with reference to non-

relative addition.

R\(S+ T} = (RS) + (R T)

for x[R \(S+T)}z = Z v {(xRy)x [y(S + 7>] }

Similarly, (R + S) T = (R
\
T) + (S

\ T)

"Either friend or colleague of a teacher of" is the same as "either friend

of a teacher of or colleague of a teacher of".

A somewhat curious formula is the following:

It holds since x[R
\ (S x T)]z = 2y {(x Ry)x [y(S x 7>] }

= Zy {(xRy)x[(ySz)x(yTz)}\

and since a x (b xc) = (a x6) x (a xc),

c 2,[(X Ry)x(yS z)} x 2,[(x Ry}x(yT z}]

And this last expression is [x(R\S)z] x[x(R\ T)z].
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If x is student of a friend and colleague of z, then x is student of a friend and

student of a colleague of z. The converse implication does not hold, be-

cause "student of a friend and colleague" requires that the friend and the

colleague be identical, while "student of a friend and student of a col-

league" does not. (Note the last step in the 'proof ', where Sv is repeated,

and observe that this step carries exactly that significance.)

Similarly, (R x S)
\

T c (R
\
T) x (S

\
T)

The corresponding formulae with t instead of
|

are more complicated

and seldom useful; they are omitted.

The relative sum is of no particular importance, but the relative product

is a very useful concept. In terms of this idea, "powers" of a relation are

definable :

R2 = R R, R3 = R* R, etc.

A transitive relation, S, is distinguished by the fact that *S
2 c S, and hence

S n c S. The predecessors of predecessors of predecessors ... of x are

predecessors of x. This conception of the powers of a relation plays a

prominent part in the analysis of serial order, and of the fundamental proper-

ties of the number series. By use ofthis and certain other concepts, the

method of "mathematical induction" can be demonstrated to be com-

pletely deductive.20

In the work of De Morgan and Peirce, "relative terms" were not given

separate treatment. The letters by which relations were symbolized were

also interpreted as relative terms by a sort of systematic ambiguity. Any
relation symbol also stood for the class of entities which have that relation

to something. But in the logistic development of mathematics, since that

time, notably in Principia Mathematical relative terms are given the

separate treatment which they really require. The "domain" of a given

relation, R that is, the class of entities which have the relation R to some-

thing or other may be symbolized by D'R, which can be defined as follows:

17-04 D'R =
x[-2y(xRy)}. Def.

The domain of R is the class of .r's determined by the function "For some y,

x has the relation R to y". If R be "employer of", D'R will be the class

of employers.

The "converse domain" of R that is, the class of things to each of

20 See Principia, i, Bk. n, Sect. E.
21 See i, ^33. The notation we use for domains and converse domains is that of Prin-

cipia.
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which something or other has the relation R may be symbolized by Q.'R

and similarly defined:

17-05 (Tfl = $[2x(xRy)}. Def.

The converse domain of R is the class of y's determined by the function

"For some x, x has the relation R to y". If R be "employer of", Q'R
will be the class of employees.

The domain and converse domain of a relation, R, together constitute

the "field "of R, C'R.

17-06 C'R = {2y[(xRy) + (yRx)]}.

The field of R will be the class of all terms which stand in either place in

the relation. If R be "employer of", C'R is the class of all those who are

either employers or employees.

The elementary properties of such "relative terms" are all obvious:

xn e T>'R = ? y (xn R y}

yn *a'R = 2x(xRyn ~)

xn e C'R =
-2y[(xn Ry) + (yR xn}}

C'R = D'R + d'R

However, for the logistic development of mathematics, these properties

are of the highest importance. We quote from Principia Mathematical 22

"
Let us ... suppose that R is the sort of relation that generates a series,

say the relation of less to greater among integers. Then D'R = all integers

that are less than some other integer = all integers, Q'R = all integers

that are greater than some other integer = all integers except 0. In this

case, C'.R = all integers that are either greater or less than some other

integer = all integers .... Thus when R generates a series, C'R becomes

important. ..."

We have now surveyed the most fundamental and important characters

of the logic of relations, and we could not well proceed further without

elaboration of a kind which is here inadmissible. But the reader is warned

that we have no more than scratched the surface of this important topic.

About 1890, Schroder could write "What a pity! To have a highly

developed instrument and nothing to do with it". And he proceeded to

make a beginning in the bettering of this situation by applying the logic

of relatives to the logistic development of certain portions of Dedekind's

theory of number. Since that time, the significance of symbolic logic has

been completely demonstrated in the development of Peano's Formulaire

22
1, p. 261.
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and of Principia Mathematica. And the very head and front of this develop-

ment is a theory of relations far more extended and complete than any

previously given. We can here adapt the prophetic words which Leibniz

puts into the mouth of Philalethes :

"
I begin to get a very different opinion

of logic from that which I formerly had. I had regarded it as a scholar's

diversion, but I now see that, in the way you understand it, it is a kind of

universal mathematics."
\

VI. THE LOGIC OF Principia Mathematica

We have now presented the extensions of the Boole-Schroder Algebra

the Two-Valued Algebra, propositional functions and the propositions

derived from them, and the application to these of the laws of the Two-

Valued Algebra, giving the calculus of propositional functions. Beyond

this, we have shown in outline how it is possible, beginning with the Two-

Valued Algebra as a calculus of propositions, to derive the logic of classes

in a form somewhat more satisfactory than the Boole-Schroder Algebra,

and the logic of relations and relative terms. In so doing, we have presented

as much of that development which begins with Boole and passes through

the work of Peirce to Schroder as is likely to be permanently significant.

But, our purpose here being expository rather than historical, we have not

followed the exact forms which that development took. Instead, we have

considerably modified it in the light of what symbolic logicians have learned

since the publication of the work of Peirce and Schroder.

Those who are interested to note in detail our divergence from the

historical development will be able to do so by reference to Sections VII

and VIII of Chapter I. But it seems best here to point out briefly what

these alterations are that we have made. In the first place, we have

interpreted 2<px, U<px, 2$(x, y), etc., explicitly as sums or products of

propositions of the form <pxn , \}/(xmyn}, etc. Peirce and Schroder avoided

this, in consideration of the serious theoretical difficulties. But while

they did not treat II <px as an actual product, 2<px as an actual sum, still

the laws which they give for propositions of this type are those which result

from such a treatment. There is no slightest doubt that the method by

which Peirce discovered and formulated these laws is substantially the one

which we have exhibited. And this explicit use of II <px as the symbol for a

product, ~L<f>x as the symbol of a sum, makes demonstration possible where

otherwise a large number of assumptions must be made and, for further

principles, a much more difficult and less obvious style of proof resorted to.
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In this part of their work, Peirce and Schroder can hardly be said to have

formulated the assumptions or given the proofs.

In the second place, the Boole-Schroder Algebra the general outline

of which is already present in Peirce 's work probably seemed to Peirce

and Schroder an adequate calculus of classes (though there are indications

in the paper of 1880 that Peirce felt its defects). With this system before

them, they neglected the possibility of a better procedure, by beginning

with the calculus of propositions and deriving the logic of classes from the

laws which govern prepositional functions. And although the principles

which they formulate for prepositional functions are as applicable to func-

tions of one as of two variables, and are given for one as well as for two,

their interest was almost entirely in functions of two and the calculus of

relatives which may be derived from such functions. The logic of classes

which we have outlined is, then, something which they laid the foundation

for, but did not develop.

The main purposes of our exposition thus far in the chapter have been

two: first, to make clear the relation of this earlier treatment of symbolic

logic with the later and better treatment to be discussed in this section;

and second, to present the logic of prepositional functions and their deriva-

tives in a form somewhat simpler and more easily intelligible than it might

otherwise be. The theoretically sounder and more adequate logic of Prin-

cipia Mathematica is given a form which so far as prepositional functions

and their derivatives is concerned seems to us to obscure, by its notation,

the obvious and helpful mathematical analogies, and requires a style of

proof which is much less obvious. With regard to this second purpose, we

disclaim any idea that the development we have given is theoretically

adequate; its chief value should be that of an introductory study, prepara-

tory to the more complex and difficult treatment which obviates the the-

oretical shortcomings.

Incidentally, the exposition which has been given will serve to indicate

how much we are indebted, for the recent development of our subject, to

the earlier work of Peirce and Schroder.

The Peirce-Schroder symbolic logic is closely related to the logic of

Peano's Formulaire de Mathematiques and of Principia Mathematica. This

connection is easily overlooked by the student, with the result that the sub-

ject of his first studies the Boole-Schroder Algebra and its applications is

likely to seem quite unrelated to the topic which later interests him the

logistic development of mathematics. Both the connections of these two
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and their differences are important. We shall attempt to point out both.

And because, for one reason, clearness requires that we stick to a single

illustration, our comparison will be between the content of preceding

sections of this chapter and the mathematical logic of Book I, Prindpia

Mathematical

The Two-Valued Algebra is a calculus produced by adding to and re-

interpreting an algebra intended primarily to deal with the relations of

classes. And it has several defects which reflect this origin. In the first

place, the same logical relation is expressed, in this system, in two different

ways. We have, for example, the proposition "If p c q and q c r, then

per", where p, q, and r are propositions. But "if . . .
, then ..."

is supposed to be the same relation which is expressed by c in p c q, q c r,

and per. Also, "and" in "peg and q c r
"

is the relation which is other-

wise expressed by x and so on, for the other logical relations. The

system involves the use of "if . . .
, then . . .", "... and . . .",

"either . . . or . . .", ". . .is equivalent to . . .", and "... is not

equivalent to . . .", just as any mathematical system may; yet these are

exactly the relations c
,
x

,
+

,
=

,
and =1= whose properties are supposed to

be investigated in the system. Thus the system takes the laws of the logical

relations of propositions for granted in order to prove them. Nor is this

paradox removed by the fact that we can demonstrate the interchange-

ability of "if . . .
,
then ..." and c, of ". . . and ..." and x, etc.

For the very demonstration of this interchangeability takes for granted

the logic of propositions; and furthermore, in the system as developed,

it is impossible in most cases to give a law the completely symbolic form

until it has first been proved in the form which involves the non-symbolic

expression of relations. So that there is no way in which the circularity

in the demonstration of the laws of propositions can be removed in this

system.

Another defect of the Two-Valued Algebra is the redundance of forms.

The proposition p or "p is true" is symbolized by p, by p =
1, by p =(= 0,

23
Logically, as well as historically, the method of Peano's Formulaire is a sort of

intermediary between the Peirce-Schroder mode of procedure and Prindpia. The general

method of analysis and much of the notation follows that of the Formulaire. But the

Formulaire is somewhat less concerned with the extreme of logical rigor, and somewhat
more concerned with the detail of the various branches of mathematics. Perhaps for this

reason, it lacks that detailed examination and analysis of fundamentals which is the dis-

tinguishing characteristic of Prindpia. For example, the Formulaire retains the ambiguity
of the relation a (in our notation, c ): p D<? may be either "the class p is contained in

the class q", or "the proposition p implies the proposition q". In consequence, the Formu-

laire contains no specific theory of propositions.
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etc., the negation of p or "p is false" by -p, p = 0, -p =
1, p 4= 1, etc.

These various forms may, it is true, be reduced in number; p and -p may
be made to do service for all their various equivalents. But these equivalents

cannot be banished, for in the proofs it is necessary to make use of the fact

that p = (p =
1)

= (p 4= 0), -p = (p = 0) = (-p =
1), etc., in order to

demonstrate the theorems. Hence this redundance is not altogether

avoidable.

Both these defects are removed by the procedure adopted for the

calculus of propositions in Principia Mathematical Here p =
1, p = 0,

etc., are not used; instead we have simply p and its negative, symbolized

by ~p. And, impossible as it may seem, the logic of propositions which

every mathematical system has always taken for granted is not presumed.

The primitive ideas are: (1) elementary propositions, (2) elementary

prepositional functions, (3) assertion, (4) assertion of a prepositional func-

tion, (5) negation, (6) disjunction, or the logical sum; and finally, the

idea of "equivalent by definition", which does not belong in the system

but is merely a notation to indicate that one symbol or complex of symbols

may be replaced by another. An elementary proposition is one which

does not involve any variables, and an elementary prepositional function

is such as "not-p" where p is an undetermined elementary proposition.

The idea of assertion is just what would be supposed a proposition may
be asserted or merely considered. The sign |- prefaces all propositions

which are asserted. An asserted prepositional function is such as "A is A "

where A is undetermined. The disjunction of p and q is symbolized by

p v q, instead of p + q. p v q means
" At least one of the two propositions,

p and q, is true ".

The postulates and definitions are as follows:

#1-01 psg. = .~pvg. Df.

"p (materially) implies q" is the defined equivalent of "At least one of

the two, 'p is false' and 'q is true', is a true proposition". (The explana-

tion of propositions here is ours.) p 3 q is the same relation which we

have symbolized by peg, not its converse.

(The propositions quoted wr
ill be given the number which they have in

Principia. The asterisk which precedes the number will distinguish

them from our propositions in earlier chapters or earlier sections of this

chapter.)

The logical product of p and q is symbolized by p q, or p . g.

24 See Bk. i, Sect. A.
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*3-01 p.g. = . ~(~pv~g). Df.

"p is true and q is true" is the defined equivalent of "It is false that at

least one of the two, p and q, is false". This is, of course, a form of De

Morgan's Theorem in our notation, (p q)
= -(-p + -q).

The (material) equivalence of p and q is symbolized by p = q or p . = . q.

*4-01 p = q, = m poq.q? p. Df.

"p is (materially) equivalent to q" is the defined equivalent of "p (ma-

terially) implies q and q (materially) implies p". In our notation, this

would be (p
=

q)
=

(p cg)(q cp). Note that ... = ... and ... = ...

Df are different relations in Principia.

The dots in these definitions serve as punctuation in place of parentheses

and brackets. Two dots, :, takes precedence over one, as a bracket over a

parenthesis, three over two, etc. In *4-01 we have only one dot after =,

because the dot between p 3 q and q 3 p indicates a product : a dot, t>r two

dots, indicating a product is always inferior to a stop indicated by the

same number of dots but not indicating a product.

The postulates of the system in question are as follows:

#1-1 Anything implied by a true elementary proposition is true. Pp.

("Pp." stands for "Primitive proposition".)

*1 11 When <px can be asserted, where x is a real variable, and <px 3 \f/x

can be asserted, where a: is a real variable, then i/x can be asserted, where x

is a real variable. Pp.

A "real variable" is such as p in -p.

*l-2 f-rpvp.o.p. Pp.

In our notation, (p + p*)
c p.

*l-3 |-:g.3.pvg. Pp.

In our notation, q c (p + q).

*l-4 |-: p vg . 3 . q vp. Pp.

In our notation, (p + q) c (q + p).

*l-5 h! p v (q vr) . 3. q v (p vr). Pp.

In our notation, [p + (q + r}} c [q + (p + r)].

*l-6 h!.<7=>r.D:pvg.D.pvr. Pp.

In our notation, (qcr) c [(p + q) c(p + r)].

Note that the sign of assertion in each of the above is followed by a
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sufficient number of dots to indicate that the whole of what follows is

asserted.

#1-7 If p is an elementary proposition, ~p is an elementary proposition.

Pp.

#1-71 If p and q are elementary propositions, pvq is an elementary

proposition. Pp.

#1-72 If <pp and \f/p are elementary prepositional functions which take

elementary propositions as arguments, <pp v \f/p is an elementary preposi-

tional function. Pp.

This completes the list of assumptions. The last three have to do

directly with the method by which the system is developed. By *l-7,

any proposition which is assumed or proved for p may also be asserted to

hold for ~p, that is to say, ~p may be substituted for p or q or r, etc., in

any proposition of the system. By #1-71, p vq may be substituted for p

or q or r, etc. And by *1 72, if any two complexes of the foregoing symbols

which make sense as "statements" can be treated in a certain way in the

system, their disjunction can be similarly treated. By the use of all three

of these, any combination such as pvq, p . q, p^q, p =
q, p^q*q^P,

~p . v . p v q, ~j) v ~q, etc., etc., may be substituted for p or q or r in any

assumed proposition or any theorem. Such substitution, for which no

postulates would ordinarily be stated, is one of the fundamental operations

by which the system is developed.

Another kind of substitution which is fundamental is the substitution

for any complex of symbols of its .defined equivalent, where such exists.

This operation is covered by the meaning assigned to "... = ... Df ".

Only one other operation is used in the development of this calculus

of elementary propositions the operation for which #1-1 and #1-11 are

assumed. If by such substitutions as have just been explained there

results a complex of symbols in which the main, or asserted, relation is 3
,

and if that part of the expression which precedes this sign is identical with a

postulate or previous theorem, then that part of the expression which

follows this sign may be asserted as a lemma or new theorem. In other

wr

ords, a main, or asserted, sign D has, by *!! and *1-11, the significant

property of "If . . .
, then . . .". This property is explicitly assumed

in the postulates. The main thing to be noted about this operation of

inference is that it is not so much a piece of reasoning as a mechanical, or

strictly mathematical, operation for which a rule has been given. No
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"mental" operation is involved except that required to recognize a previous

proposition followed by the main implication sign, and to set off what

follows that sign as a new assertion. The use of this operation does not,

then, mean that the processes and principles of ordinary logic are tacitly

presupposed as warrant for the operations which give proof.

What is the significance of this assumption of the obvious in *1 1, #! 11,

#1-7, *1-71, and #1-72? Precisely this: these postulates explicitly

assume so much of the logical operations as is necessary to develop the

system, and beyond this the logic of propositions simply is not assumed.

To illustrate this fact, it will be well to consider carefully an exemplary

proof or two.

#2-01 h:p=>~;p .3- ~;p

r ~P~I
Dem. Taut \-i ~p v ~p . 3 . ~p (1)

[(!).(*! 01)] hipD-p.D.-p

"Taut" is the abbreviation for the Principle of Tautology, *l-2 above.

~plp indicates that ~p is substituted in this postulate for p, giving (1).

This operation is valid by *l-7. Then by the definition #1-01, above,

p D ~p is substituted for its defined equivalent, ~p v ~p, and the proof is

complete.

*2-05 H q^r .2: poq .D. p^r

Dem. Sum
\ \-z . qor .0 '

~p vo . D . ~p vr (1)
L p J

[(1) . (-&1-01)] \-l . q^r .D: poq ,D. por

Here "Sum" refers to ^1-6, above. And (1) is what ^1-6 becomes when

~p is substituted for p. Then, by *1-01, p^>q and p^r are substituted

for their defined equivalents, ~pvg and ~pvr, in (1), and the resulting

expression is the theorem to be proved.

The next proof illustrates the use of *1 1 and *1 11.

&2-06 h: p^q -3! q^r .3. por

Dem.
p

r ' ?3? ' "-'I
, q, r J

3r.3:j>Dg'.D.p3r!.3:.;pDqr.D:gor.3.p3r (1)

[#2-05] h! q^r. ?:p^q. o m por (2)

[(1) . (2) . #1-11] \-: . poq .0: qor .o.p^r
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"Comm "
is #2 04, previously proved, which is p.o.q^riosqo.por.

When, in this theorem, q 3 r is substituted for p, p 3 q for q, and p 3 r for r,

it becomes the long expression (1). Such substitutions are valid by *l-7,

#1-71, and the definition *1-01: if p is a proposition, ~p is a proposition;

if ~p and q are propositions, ~p v q is a proposition ;
and p 3 q is the defined

equivalent of ~p v q. Thus poq can be substituted for p. If we replace

the dots by parentheses, etc., (1) becomes

h { (g 3 r) 3 [(p 3 g) 3 (p 3 r)] }
3

{ (p 3 g) 3 [(q 3 r) 3 (p 3 r)} }

But, as (2) states, what here precedes the main implication sign is identical

with a previous theorem, ^2-05. Hence, by *1-11, what follows this

main implication sign the theorem to be proved can be asserted.

Further proofs would, naturally, be more complicated, but they involve

no principle not exemplified in the above. These three operations sub-

stitutions according to *l-7, *1-71, and *l-72; substitution of defined

equivalents; and "inference" according to #1-1 and *1-11 are the only

processes which ever enter into any demonstration in the logic of Principia.

The result is that this development avoids the paradox of taking the logic

of propositions for granted in order to prove it. Nothing of the sort is

assumed except these explicitly stated postulates whose use we have ob-

served. And it results from this mode of development that the system is

completely symbolic, except for a few postulates, *1 1, *1 7, etc., involving

no further use of "if . . .
, then . . .", "either ... or ...","... and

"
etc

j wlfVft

We have now seen that the calculus of propositions in Principia Mathe-

matica avoids both the defects of the Two-Valued Algebra. The further

comparison of the two systems can be made in a sentence : Except for the

absence, in the logic of Principia, of the redundance of forms, p, p =
1,

p =t= 0, etc., etc., and the absence of the entities and 1, the two systems

are identical. Any theorem of this part of Principia can be translated

into a valid theorem of the Two-Valued Algebra, and any theorem of the

Two-Valued Algebra not involving and 1 otherwise than as
{
=

} or

{
= 1

}
can be translated into a valid theorem of Principia. In fact, the

qualification is not particularly significant, because any use of and 1 in

the Two-Valued Algebra reduces to their use as
{
=

}
and

{
= 1

}
. For

as a term of a sum, and 1 as a factor, immediately disappear, while the

presence of as a factor and the presence of 1 in a sum can always be other-

wise expressed. But p = is -p, and p I is p. Hence the two systems
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are simply identical so far as the logical significance of the propositions

they contain is concerned. 25

The comparison of our treatment of propositional functions with the

same topic in Principia is not quite so simple.
26

In the first place, there is, in Principia, the "theory of types," which

concerns the range of significance of functions. But we shall omit con-

sideration of this. Then, there are the differences of notation. Where

we write TL<px, or Hx (px, Principia has (x) . <px; and where we write 2<px,

or 2x <px, Principia has (3#) . <px. A further and more important difference

may be made clear by citing the assumptions of Principia.

*9-01 ~{(x) . <px} . = . (3a;) . ~<px. Df.

*9-02 ~{(3z) . <px} . = . 0) . ~<px. Df.

*9-03 (X) . <px . vp : = . (x) . <px vp. Df.

25 This may be proved by noting that, properly translated, the postulates of each system
are contained amongst the propositions of the other. Of the postulates in Principia,
rendered in our notation:

^1-01 is (pc.q) = (-p + q), which is contained in our theorem 9-3.

^1-2 is (p + p) cp, which is a consequence of our theorems 2-2 and 5-33.

^1-3 is, p c (p + q}, which is our theorem 5-21.

^1-4 is (p + q) c (q + p), which follows from our theorem 4-3, by 2-2.

^1-5 is, p + (q + r) cq + (p + r), which is a consequence of our theorems 4-3 and 4-4,

by 2-2.

*l-6 is (q cr) c [(p + q) c (p + r)], which is a consequence of our theorem 5-31, by 2-2.

The remaining (non-symbolic) postulates are tacitly assumed in our system.
Of our postulates, 1-1-1-9 in Chap, n and 9-01 in Chap, iv:

1-1 is a consequence of ^-1-7 and ^-1-71 in Principia.

1-2 is ->K4'24 in Principia.

1-3 is ^-4-3 in Principia.

1 -4 is ^2-3 in Principia.

1 -5 is equivalent to "If a; = 0, then a x = 0", hence to -x c -(a x), which is a consequence
of *3-27 in Principia, by *2-16.

1-61, in the form -(x -a) c (x a =
x), is a consequence of ^-4 -71 and ^4-61 in Principia,

by *4-01 and *3-26.

1-62, in the form [(y a = y}(y -a = y)]c-y, is a consequence of ^-4-71, ^-5-16, and

^2-21 in Principia.

1-7 is equivalent to [(x
= \)(y = 0)] c (x = -y), hence to (x -y} c (x = -y), which is an

immediate consequence of ^5-1 in Principia.

1 8 is ^4 57 in Principia.

1-9 is ^4-71 in Principia.

9-01 is equivalent to (q
=

1) c [p
= (p =

q)], hence to q c [p
= (p =

q)], which is an

immediate consequence of ^5-501 in Principia.
26 See Principia, i, 15-21.
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In this last, note the difference in the scope of the "quantifier" (x) on the

two sides. If the dots be replaced by parentheses, *9 03 will be

{[(*) - (px] vp} =
{(x) ,[<pxvp]\

A similar difference in the scope of (x) or (3.r) on the two sides characterizes

each of the further definitions.27

*9 04 p . v . (x) . <px : = . (x) . p v <px. Df .

#9 05 (3.r) . <px . v . p : = . (3x) . <px v p. Df .

*9 -06 p . v . (3.r) . (px : = . (3.r) . p v <px. Df.

*9-07 (x) . (px . v . (%) . ^ : = : (x) : (3y) . #e vty. Df.

*9 -08 (3y) . fy . v . (ar) . <px : = : (x) : (3#) . ^ v <px. Df.

Besides these definitions, there are four postulates (in addition to those

which underlie the calculus of elementary propositions).

*9-l |-: <px 3 . (3 2) . tpz. Pp.

*9 1 1 H! <px v <py . D . (3 2) . <pz. Pp.

^9-12 What is implied by a true premiss is true. Pp.

*9-13 In any assertion containing a real variable, this real variable may
be turned into an apparent variable for which all possible values are asserted

to satisfy the function in question. Pp.

By our method, every one of these assumptions, except *9-12, is a

proved proposition. In our notation,

*9-01 is -II (px
= S -<px, which is our theorem 10-1, with -<px substituted

for <px.

#9-02 is -2<px = Tl-<px, which is our theorem 10-12, with -<px substi-

tuted for (px.

*9-03 is Ti(px + P = Ux((px + P), which is our theorem 10-32.

*9-04 is P + n<Ar = nz(P+ (px), which is 10-33.

*9-05 is 2(px + P = Zx (>.r + P), which is 10-3.

*9-06 is P+ Z(px = SZ(P+ (px), which is 10-31.

*9-07 is H<px + 2\l/y
= H.x '2y((px + -*l/y), which is contained in 12-5.

*9-08 is 2^y + Hpx = nx2 y (if/y (px), which is also contained in 12-5.

The postulates require explanation. The authors of Principia use

<py, <pz, etc., to represent values of the function (px. In other words, where

we have written (pxn they simply change the letter. This is a valid con-

27
Ibid., i, 135-38.
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vention (though it often renders proofs confusing) because the range of <px

is determined by <p, not by x, and x is conventions aside indifferent.

z in <pz, where we should write <pxn , is called a "real variable", x in (x) . tpx

and (3.r) . px, an "apparent variable". With this explanation, it is clear

that:

#9-1 is <pxn c.*L<px, which is 10-21.

#9-11 is (pxm + <pxn c*2<px, which is an immediate consequence of 10-21,

by 5 -33.

#9-13 is "If whatever value of x, in <px, xn may be, <pxn , then H<px," and

this implication is contained in the equivalence stated by 10-23.

These principles which are assumed in Principia Mathematica are suf-

ficient to give all further propositions concerning functions of one variable,

without assuming (x) . <px to be the product of <px\, <f>x 2 ,
etc. (or <py, <pz,

etc.), (3#) . <px to be the sum of <pxi, <f>Xz, etc. These are simply assumed

as new primitive ideas, (x) . <px meaning
"

<px for all values of x", (3ar) . <px

meaning
"

<px for some values of x". This procedure obviates all questions

about the number of values of x in px which troubled us and secures

the universality of theorems involving prepositional functions without any

discussion or convention covering the cases in which the values of the vari-

able are infinite in number. The proofs in Principia reflect this difference

of method. They are, in general, what ours might have been if we had

based all further proofs directly upon 10-23 and the propositions con-

necting 2<px + P with 21 (<f>x + P), etc., not making any use, after 10-23,

of the properties of n <px as a product, or of 2<px as a sum.

The theory of functions of two variables, in Principia Mathematica,

requires two further assumptions:

#11-01 (x, y) . <p(x, ?/).
= : GC) : (y*) . <p(x, y). Df.

*11 -03 (Bar, y) . v(x, y) . = : (3x) : (%) . <p(x, y). Df.

These are identically our assumptions :

11-06 nx> y <p(x, y)
= nxUv <p(x, y), and

11-05 S Zf y <p(x, y}
= 2x2 y <p(x, y).

The difference between the treatment of prepositional functions which

we have given and the treatment in Principia is not necessarily correlated

with the difference between our treatment of propositions and theirs. The

method by which we have developed the theory of propositional functions

20
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might exactly as well have been based upon the calculus of elementary

propositions in Principia as upon the Two-Valued Algebra. A few minor

alterations would be sufficient for this change. The different procedure

for prepositional functions, in the two cases, is a difference to be adjudged

independently, without necessary reference to the defects of the Two-

Valued Algebra which have been pointed out.

Beyond the important differences which have been mentioned, there

are minor and trivial divergences between the two systems, due to the

different use of notation. Neglecting these, we may say that the two

methods give the same results, with the following exceptions:

1. There are certain complexities in Principia due to the theory of

types.

2. In Principia the conditions of significance are explicitly investigated.

3. Principia contains a theory of "descriptions", account of which is

here omitted.

But none of these exceptions is a necessary difference. They are due to

the more elementary character of our presentation of the subject. We

may, then, say loosely that the two methods give identical results.

The calculus of classes and of relations which we have outlined in the

preceding sections bear a similar relation to the logic of classes and of

relations in Principia; that is to say, there is much more detail and com-

plexity of theory in Principia, but so far as our exposition goes, the two are

roughly the same. And here there is no important difference of method.

It should now be clear how the logic of Principia is related to the logic

we have presented, following in the main the methods of Peirce and Schroder.

There is much difference of method, and, especially in the case of the cal-

culus of propositions, this difference is in favor of Principia. And in

Principia there is much more of theoretical rigor and consequent complexity :

also there are important extensions, especially in the theory of "descrip-

tions" and the logic of relatives. But so far as the logic which we have

expounded goes, the two methods give roughly identical results. When
we remember the date of the work of Peirce and Schroder, it becomes clear

what is our debt to them for the better developments which have since

been made.



CHAPTER V

THE SYSTEM OF STRICT IMPLICATION 1

The systems discussed in the last chapter were all based upon material

implication, peg meaning exactly "The statement,
'

p is true and q false/

is a false statement". We have already called attention to the fact that

this is not the usual meaning of "implies". Its divergence from the

"implies" of ordinary inference is exhibited in such theorems as "A false

proposition implies any proposition", and "A true proposition is implied

by any proposition".
2

The present chapter intends to present, in outline, a calculus of propo-

sitions which is based upon an entirely different meaning of
"
implies

"-

one more in accord with the customary uses of that relation in inference

and proof. We shall call it the system of Strict Implication. And we shall

refer to Material Implication, meaning either the Two-Valued Algebra or

the calculus of propositions as it appears in Principia Mathematica, since

the logical import of these two systems is identical. It will appear that

Strict Implication is neither a calculus of extensions, like Material Impli-

cation and the Boole-Schroder Algebra, nor a calculus of intensions, like

the unsuccessful systems of Lambert and Castillon. It includes relations

of both types, but distinguishes them and shows their connections. Strict

Implication contains Material Implication, as it appears in Principia

Mathematica, as a partial-system, and it contains also a supplementary

partial-system the relations of which are those of intension.

The numerous questions concerning the exact significance of implication,

and the ordinary or "proper" meaning of "implies", will be discussed in

Section V.

It will be indicated how Strict Implication, by an extension to preposi-

tional functions, gives a calculus of classes and class-concepts which exhibits

their relations both in extension and in intension. In this, it provides the

1 Various studies toward this system have appeared in Mind and the Journal of Phi-

losophy (see Bibliography). But the complete system has not previously been printed.

We here correct, also, certain errors of these earlier papers, most notably with reference to-

triadic "strict" relations.

2 For further illustrations, see Chap, n, Sect, i, and Lewis, "Interesting Theorems ia

Symbolic Logic," Jour. Philos., Psych., etc. x (1913), p. 239.
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calculus of intensions, so often attempted before, so far as such a calculus

is possible at all.

I. PRIMITIVE IDEAS, PRIMITIVE PROPOSITIONS, AND IMMEDIATE CONSE-

QUENCES

The fundamental ideas of the system are similar to those of MacColl's

Symbolic Logic and its Applications. They are as follows:

1. Propositions: p, q, r, etc.

2. Negation: -p, meaning "p is false".

3. Impossibility: ~p, meaning "p is impossible", or "It is impossible

that p be true".3

4. The logical product: p x</ or p q, meaning "p and q both", or "p is

true and q is true".

5. Equivalence: p =
q, the defining relation.

Systems previously developed, except MacColl's, have only two truth-

values, "true" and "false". The addition of the idea of impossibility

gives us five truth-values, all of which are familiar logical ideas:

(1) p, "pis true".

(2) -p, "pis false".

(3) ~p, "p is impossible".

(4) p, "It is false that p is impossible" i. e., "p is possible".

(5) ~-p, "It is impossible that p be false" i. e., "p is necessarily

true".

Strictly, the last two should be written -(~p) and ~(-p): the parentheses

are regularly omitted for typographical reasons.

The reader need be at no pains to grasp p and ~-p as simple ideas:

it is sufficient to understand -p and ~p, and to remember that each such

prefix affects the letter as already modified by those nearer it. It should

be noted that there are also more complex truth-values. p is equivalent

to p, as will be shown, but p,
~ -

~p,
- ~

p, etc., are irreducible.

We shall have occasion to make use of only one of these, p,
"
It is

false that it is impossible that p be true" i. e., "p is possibly false".4

Each one of these complex truth-values is a distinct and recognizable idea,

though they are seldom needed in logic or in mathematics.

* We here use a symbol, ~, which appears in Principia Mathematical with a different

meaning. The excuse for this is its typographical convenience.
4 MacColl uses a single symbol for p, "p is possibly true" and -~-p, "p is possibly

false".
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The dyadic relations of propositions can be defined in terms of these

truth-values and the logical product, p q.

1-01 Consistency. poq = -~(pq). Def.

~(pq)> "ft is impossible that p and q both be true" would be "p and q

are inconsistent". Hence -~(pq), "It is possible that p and q both be

true", represents
"
p and q are consistent".

1-02 Strict Implication. p-*q = ~(p-q)- Def.

1-03 Material Implication. pcq = -(p-q). Def.

1-04 Strict Logical Sum. p*q =
~(-p~~q)' Def.

1-05 Material Logical Sum. p+q = ~(~p~q)- Def.

1-06 Strict Equivalence, (p
=

q)
=

(p -iq)(q-* P) Def.

We here define the defining relation itself, because by this procedure we.

establish the connection between strict equivalence and strict implication.

Also, this definition makes it possible to deduce expressions of the type,

p =
q something which could not otherwise be done. 5 But p =

q re-

mains a primitive idea as the idea that one set of symbols may be replaced

by another.

1 07 Material Equivalence, (p = q)
= (p c q) (qcp*). Def.

These eight relations the seven defined above and the primitive rela-

tion, p q divide into two sets, p q, p c q, p + q, and p = q are the relations

which figure in any calculus of Material Implication. We shall refer to

them as the "material relations", p o q, p-lq, p*q, and p =
q involve

the idea of impossibility, and do not belong to systems of Material Impli-

cation. These may be called the "strict relations". We may anticipate a

little and exhibit the analogy of these two sets, which results from the

theorem

~(p q}
= -(P 1}

shortly to be proved.

Strict relations : Material relations :

p -J q
= -(p O -q) p c q

= -(p -q)

p A q = -(-p o -<?) P + Q
= -(-p -q)

(p =
q)

= -(p o -q} * -(q -p) (p = q)
= -(p -q) *-(? -p)

B The "circularity" here belongs inevitably to logic. No mathematician hesitates to

prove the equivalence of two propositions by showing that
"
If theorem A, then theorem B,

and if theorem B, then theorem A ". But to do this he must already know that a reciprocal

"if ... then . . .

"
relation is equivalent to an equivalence. And the italicized

"
equivalent

to" represents a relation which must be assumed.



294 A Survey of Symbolic Logic

The reader will, very likely, have some difficulty in distinguishing in meaning

p -J q from p c q, p A q from p + q. The above comparison may be of assist-

ance in this connection, since it translates these relations in terms of p o q

and p q. We shall be in no danger of confusing p o q, "pis consistent with

q," with p q, "p and q are both true".

Both p A q and p + q would be read
"
Either p or q ". But p A q denotes

a necessary connection; p+ q a merely factual one. Let p represent "To-*,

day is Monday", and q, "2 + 2=4". Then p+q is true but p*q is

false. In point of fact, at least one of the two propositions, "Today is

Monday" and "2 + 2 = 4", is true; but there is no necessary connection

between them. "Either . . . or . . ." is ambiguous in this respect. Ask

the members of any company whether the proposition "Either today is

Monday or 2 + 2 = 4" is true, and they will disagree. Some will confine

"Either ... or ..." to the p*q meaning, others will make it include

the p+q meaning; few, or none, will make the necessary distinction.

Similarly, the difference between p =
q and p = q is that p =

q denotes

an equivalence of logical import or meaning, while p = q denotes simply

an equivalence of truth-value. As was shown in Chapter II, p = q may be

accurately rendered "p and q are both true or both false". Here again,

the strict relation, p =
q, symbolizes a necessary connection; the material

relation, p = q, a merely factual one.

The postulates of the system are as follows :

1-1 p q-4 q p

If p and q are both true, then q and p are both true.

1'2 qp-*p

If q and p are both true, then p is true.

1-3 p -lp p

If p is true, then p is true and p is true.

1-4 p(qr)4q(pr)

If p is true and q and r are both true, then q is true and p and r are both

true.

1-S p-i-(-p)

If p is true, then it is false that p is false.

1-6 (pHgXgHr)-j(p-ir)

If p strictly implies q and q strictly implies r, then p strictly implies r.
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1-7 ~p*-p
If it is impossible that p be true, then p is false.

1-8 p -1 g = ~g H ~p

"p strictly implies q" is equivalent to "'q is impossible' strictly im-

plies 'p is impossible'".

The first six of these present no novelty except the relation -i . They
do not, so far, distinguish this system from Material Implication. But,

as we shall see shortly, the postulates 1 7 and 1 8 are principles of trans-

formation; they operate upon the other postulates, and on themselves,

and thus introduce the distinguishing characteristics of the system. Postu-

late 1 -7 is obvious enough. Postulate 1 -8 is equivalent to the pair,

(p -J q) -J (- ~p -J
-
~g) If p implies q, then

'

p is possible
'

implies

'q is possible'.

(~p -J ~g) -J (-p -J -q) If 'p is impossible' implies 'q is impossible',

then 'p is false' implies
'

q is false'.

These two propositions are more "self-evident" than the postulate, but

they express exactly the same relations.

(To eliminate parentheses, as far as possible, we make the convention

that the sign =, unless in parentheses, takes precedence over any other

relation
;
that -i and c take precedence over A

,
+

,
o

, and x
; that A

and + take precedence over o and x
;
and that * takes precedence over

c . Thus

pq + -p-q*pcq is [(p q) + (-p -q)] -1 (p eg)

and p c q r = (p c g) (p c r) is [p c (q r)]
=

[(p c q) (p c r)]

However, where there is a possibility of confusion, we shall put in the

parentheses.)

The operations by which theorems are to be derived from the postulates

are three:

1. Substitution. Any proposition may be substituted for p or g or r,

etc. If p is a proposition, -p and ~p are propositions. If p and g are

propositions, p q is a proposition. Also, of any pair of expressions related

by =
, either may be substituted for the other.

2. Inference. If p is asserted and p n g is asserted, then g may be

asserted. (Note that this operation is not assumed for material impli-

cation, p c g.)

3. Production. If p and g are separately asserted, p q may be asserted.

These are the only operations made use of in proof.



296 A Survey of Symbolic Logic

In order to make clearer the nature of the strict relations, and particu-

larly strict implication, we shall wish to derive from the postulates their

correlates in terms of strict relations. This can be done by the use of

postulate 1-8 and its consequences, for by 1-8 a relation of two material

relations can be transformed into a relation of the corresponding strict

relations. But as a preliminary to exhibiting this analogy, we must prove a

number of simple but fundamental theorems. These working principles

will constitute the remainder of this section.

The first theorem will be proved in full and the proof explained. The

conventions exemplified in this proof are used throughout.

2- 1 p q -J p

1-6 {pq/p; qp/q; p/r}: 1-1 xl-2 -J (p q -ip)

This proof may be read :

"
Proposition 1 6, when p q is substituted for p,

qp for q, and p for r, states that propositions 1-1 and 1-2 together imply

(p q -t p) ". The number of the proposition which states any line of proof

is given at the beginning of the line. Next, in braces, is indication of any

substitutions to be made.
"
p q/p" indicates that p q is to be substituted,

in the proposition cited, for p; "p + q/r" would indicate that p+ q was to

be substituted for r, etc. Suppose we take proposition 1 6, which is

and make the substitutions indicated by {p q/p; qp/p; p/r}. We then

get

This is the expression which follows the brace in the above proof. But

since p q H q p is 1 1, and q p -J p is 1-2, we write 1-1 xl-2 instead of

(p q-i qp)(qp -ip). This calls attention to the fact that what precedes

the main implication sign is the product of two previous propositions.

Since 1-1 and 1-2 are separately asserted, their product may be asserted;

and since this product may be asserted, what it implies the theorem to be

proved may be asserted. The advantage of this way of writing the proofs

is its extreme brevity. Yet anyone who wishes to reconstruct the demon-

stration finds here everything essential.

2-11 (p =
q) * (p * q)

2-1 {p-lq/p; q-lp/q}: (p H q) (q -* p) -J (p H q)

1-06: (p =
q)

= (p-lq)(q-lp)
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2-12 (p =
q)-i(q-ip)

Similar proof, 1-2 instead of 2-1.

2-2 (p-tq)4(~q-*~p}

1-06: 1-8 = [(p*q)-l(~q-l~p}}((~q-l~p}-l(p*q)} (I)

2-1: (1H Q.E.D.

In this last proof, we introduce further abbreviations of proof as follows:

(1), or (2), etc., is placed after a lemma which has been established, and

thereafter in the same proof we write (1), or (2), etc., instead of that lemma.

Also, we shall frequently write "Q.E.D." in the last line of proof instead

of repeating the theorem to be proved. In the first line of this proof, the

substitutions which it is necessary to make in order to get

1 -8 =
[(p -J q) -I (~? -i ~p)][(~g -J ~p) 4 (p -J g)]

are not indicated because they are obvious. And in the second line, state-

ment of the required substitutions is omitted for the same reason. Such

abbreviations will be used frequently in later proofs.

Theorem 2-2 is one of the implications contained in postulate 1-8.

By the definition, 1 6, any strict equivalence may be replaced by a pair of

strict implications. By postulate 1-2 and theorem 2-1, either of these

implications may be taken separately.

2-21 (~q * ~p) 4 (p * q)

1-2: [(1) in proof of 2 -2H Q.E.D.

This is the other implication contained in postulate 1-8.

2-3 (-P4q~)4(-q4p)
1-1 {-q/p; -p/q}: -q-p-l-p-q (1)

2-2 {-q -pip; -p -q/q] : (1) H [~(-p -q) 4 ~(-q -p}} (2)

1-02: (2)
= Q.E.D.

2-4 p4p
1-2 {p/q}: pp-lp (1)

1-6: l-3x(l)^Q.E.D.

2-5 -(-p)^p
2-4 {-pip}: -p-l-p (1)

2-3 {-p/q}: (1)H Q.E.D.

2-51 -(-p) = p

1-06: 2-5xl-5 = Q.E.D.
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2-6 (-p H -g) -J (q -J p)

2-3 {-g/9 |
: (-p-J-gHK-gH?] (l)

2-51: (1)
= Q.E.D.

2-61 (p * -g) * (g -J -p)

2-6 {-p/p}: K-p)-J-gH(g-l-p) (1)

2-51: (1)
= Q.E.D.

2-62 (p H g) * (-g H -p)

2-61 {-g/g}: [p -l -(-g)] H (-g -J -p) (1)

2-51: (1)
= Q.E.D.

2-63 (png) = (-g-i-p)

1-06: 2-62x2-6 = Q.E.D.

2-64 (p-J-g)
=

(g-J-p)

1-06: 2-61x2-3 = Q.E.D.

Theorems 2-3, 2-6, 2-61, and 2-62 are the four forms of the familiar

principle that an implication is converted by changing the sign of both

terms.

2-7 (~p -J ~g) * (-p H -g)

2-21 {p/g; g/p} : (~p H ~g) -J (g -J p) (1)

2-62 {p/g; g/p} : (g H p) < (-p -J -g) (2)

1-6: (1) x (2) H Q.E.D.

2-71 (-p -{ -g) H (~p * ~g)

2-6: (-p^-g)H(g Hp) (1)

2-2 {g/p; p/g} : (g -J p) H (~p -J ~g) (2)

1-6: (1) x (2) H Q.E.D.

2-712 (-p-J-g) = (~p-J~g)

1-06: 2-71 x2-7 = Q.E.D.

2-72 (~ -p -J ~ -g)H (p -i g)

2-7 {-p/p; -g/g} : (~ -p -l ~ -g) H [-(-p) -J -(-g)] (1)

2-51: (1)
= Q.E.D.

2-7J (p-lg)-{(~-p-{~-g)

2-71 {-p/p; -g/g} : [-(-p) H -(-g)] -l (~ -p -J -g) (1)

2-51: (1)
= Q.E.D.

2-731 (p-lg) = (~-p-J~-g)

1-06: 2-73x2-72 = Q.E.D.

2-74 (P 4q)4(-~p4-~q)
2 - 62

{ ~g/p; ~p/g} : (~g -t ~p) -J (- ~p H - ~g) (1)

1-6: 2-2 x(l)-i Q.E.D.
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2-75 (-~p4-~q)4(p4q)
2-6 [~plp; ~q/q} : (- ~p -{

-
~g) * (~g -J ~p) (1)

1-6: (1) x2-2lH Q.E.D.

2-76 (png) = (--p .*--,?)

1-06: 2-74x2-75 = Q.E.D.

2-77 (p * q)
=

(- ~p -I
-

~?)
= (~ -p -J ~ -q)

=
(-q -J -2?)

=
(~? ^ ~P)

2-76 X2-731 x2-63 x2-712 = Q.E.D.

"p implies q" is equivalent to '"p is possible' implies 'q is possible'" is

equivalent to "'p is necessary' implies 'q is necessary'" is equivalent to
" f

q is false' implies 'p is false'" is equivalent to "'q is impossible' implies

'p is impossible'".

2-6-2-77 are various principles for transforming a strict implication.

These are all summed up in 2-77. The importance of this theorem will be

illustrated shortly.

2-8 pq = qp
1-1 {qfp; p/q}: qp-lpq (1)

1-06: l-lx(l) = Q.E.D.

2 81 p = pp
1-2 {p/q}: pp-tp (1)

1-06: l-3x(l) = Q.E.D.

2-9 p(qr) = q(p r)

1-4 {q/p-, p/q}: q(pr)-lp(qr) (1)

1-06: l-4x(l) = Q.E.D.

2-91 p(qr) =
(p q)r

2-8: p(qr) = p(r q)

2-9: p(rq) = r(p q)

2-8: r(pq) = (p q)r

The above theorems constitute a preliminary set, sufficient to give

briefly most further proofs.

II. STRICT RELATIONS AND MATERIAL RELATIONS

We proceed now to exhibit a certain analogy between strict relations

and material relations; between truths and falsities on the one hand and

necessities, possibilities, and impossibilities on the other. This analogy

runs all through the system: it is exemplified by 2-77.
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1-1 pq-*qp 3-11 poq-iqop
If p and q are both true, then q If p and q are consistent, then q

and p are both true. and p are consistent.

1-2 qp-lp 3-12 qopl-~p
If 9 and p are both true, then p If g and p are consistent, then

is true. it is possible that p be true.

1-3 p*p p 3-13 -~p 4 pop
If p is true, then p and p are If it is possible that p be true,

both true. then p is consistent with itself.

1-4 p(qr)lq(pr) 3-14 p o (q r) H q o (p r)

The correspondence exhibited in the last line seems incomplete. But

we should note with care that while

P(q r)
= q(p r)

= (p q)r

and any one of these may be read "p, q, and r are all true", p o (q or)

is not "p, q, and r are all consistent", po(qor) means "p is consistent

with the proposition 'q is consistent with r'". Let p = "Today is Tues-

day"; q
= "Today is Thursday"; r = "Tomorrow is Friday". Then

q o r is true. And it happens to be Tuesday, so p is true. Since p and

q or are both true in this case, they must be consistent: p o (q or) is true.

But "p, q, and r are all consistent" is false. "Today is Tuesday" is incon-

sistent with "Today is Thursday" and with "Tomorrow is Friday".

Suppose we represent "p, q, and r are all consistent" by p oq or. Then

as a fact, p oq or will not be equivalent to p o (q or). Instead, we shall

have

poqor = po(qr) =
q o (p r)

= (p q) or

"p, q, and r are all consistent" is equivalent to "p is consistent with the

proposition
(

q and r are both true'", etc. We may, then, add two new

definitions :

3-01 'pqr = p(qr). Def.

3-02 p oqor = po(qr). Def.

3-02 is typical of triadic, or polyadic, strict relations: when parentheses

are introduced into them, the relation inside the parentheses degenerates

into the corresponding material relation. In terms of the new notation of

3-01 and 3-02, the last line of the above table would be

pqrlqpr poqor-iqopor

which exhibits the analogy more clearly.
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We must now prove the theorems in the right-hand column of the table

3-11 p oq-i q op
2-74 {qp/p; qp/q}: M < [- ~(p q) H -

~(g p)] (1)

1-01: (1)
= Q.E.D.

3 12 q o p H - ~p

2-74 (gp/p; p/g}: 1-2 -i [- ~(gp) -J- ~p] (1)

1-01: (1)
= Q.E.D.

3 J3 - ~p -1 p o p

2-74 {pp/p}: 1-3H[-~PH-~(PP)] (1)

1-01: (1)
= Q.E.D.

3 14 p o (q r) -4 q o (p r)

2-74 {p(gr)/p-, q(pr)/q}: 1-4 -
~[p(q r)] -{

-
~[q(p r}] (1)

1-01: (1)
= Q.E.D.

(In the above proof, the whole of what 1-4 is stated to imply should

be enclosed in a brace. But in such cases, since no confusion will be oc-

casioned thereby, we shall hereafter omit the brace.)

3 15 p o (q r)
= (p q) o r = q o (p r)

2-76: 2-9H[p(gr)] = -
~[g(p r)] (1)

2-76: 2-9H-~[p(gr)] = -
~[(p q)r] (2)

1-01: (2) x(l) = Q.E.D.

An exactly similar analogy holds between the material logical sum,

p + q, and the strict logical sum, p A q.

3-21 p + q-iq + p 3-31 p*q4q*p
"At least one of the two, p and "Necessarily either p or q" im-

q, is true" implies "At least one plies "Necessarily either q or p".

of the two, q and p, is true".

3-22 plp + q 3-32 ~-p-JpAg
If p is true, then at least one of If p is necessarily true, then

the two, p and q, is true. necessarily either p or q is true.

3-23p + p-*p 3-33pApH~-p
If at least one of the two, p and If necessarily either p is true or

p, is true, then p is true. p is true, then p is necessarily true.

3-24 p + (q + r) H q + (p + r) 3-34 p A (g + r) -*
</
A (p + r)

As before, the analogy in the last line seems incomplete, and as before,

it really is complete. And the explanation is similar, p + (q + r) and
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q + (p + r) both mean "At least one of the three, p, q, and r, is true". But

p A (q A r) would not mean " One of the three, p, q, and r, is of necessity

true". Instead, it would mean "One of the two propositions, p and

'necessarily either q or r', is necessarily true". To distinguish pA(g + r)

from p A (q A r) is rather difficult, and an illustration just now, before we

have discussed the case of implication, would probably confuse the reader.

We shall be content to appeal to his 'intuition' to confirm the fact that

"Necessarily one of the three, p, q, and r, is true" is equivalent to "Neces-

sarily either p is true or one of the two, q and r, is true
"

and this last is

p A (q + r). If we chose to make definitions here, similar to 3-01 and 3-02,

they would be

p + q + r = p + (g + r)

and p A ? Ar = P A (q + r)

Proof of the theorems in the above table is as follows:

3-21 p + q-iq + p
1-1 {-q/p; -p/q}: -q-p-t-p-q (1)

2-62: (l)H-(-p -g)^-(-? -p) (2)

1-05: (2)
= Q.E.D.

3 22 p-ip + q

Similar proof, using 1 -2 in place of 1-1.

3 23 p + plp
Similar proof, using 1-3.

3 24 p + (q + r) -J q + (p + r)

1-4 {-q/p; -p/q; -r/r}: -q(-p -r) -J -p(-q -r) (1)

2 62 : (1) -J -[-p(-q -r)] -J -(-q(-p -r)] (2)

2-51: (2)
= -{-p-[-(-g -r)]} H -{-9 -[-(-p -r)]} (3)

1 05 : (3)
= p + -(-q -r) -{ q + -(-p -r) (4)

1-05: (4)
= Q.E.D.

3 - 25 p + (q + r)
=

(p + q) + r = q + (p + r)

Similar proof, using 2-9 and 2-91, and 1-06.

3-31 p A g S q*p
1-1 {-q/p; -p/q}: -q-p-i-p-q (1)

2-2: (l)H.(-p -g)H-(^r-p) (2)

1-04: (2)
= Q.E.D.

3 ' 32 ~ -p -t p A q

Similar proof, using 1 -2 in place of 1-1.
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3 - 33 p A p -j ~ -p

Similar proof, using 1-3.

3 34 p A (q + r) H q A (p + r)

1-4 {-g/p; -pfq; -r/r} : -q(-p -r) -J -p(-q -r) (1)

2 2 : (1) H ~[-p(-q -r)] -J ~[-g(-p -r)] (2)

2-51: (2)
= ~{-p-[-(-g-r)]} .< ~{-g-[-(-p -r)]} (3)

1 04 : (3)
= p A -(-g -r) -{ g A -(-p -r) (4)

1-05: (4)
= Q.E.D.

3 35 p A (q + r)
= (p + g) A r = g A (p + r)

Similar proof, using 2-9 and 2-91, and 1-06.

Again, an exactly similar analogy holds between material implication,

peg, and strict implication, p -J q.

3-41 (pcgH(-gc-p)
If p materially implies g, then

'

q

is false' materially implies 'p is

false'.

3-42 -p-J(pcg)

If p is false, then p materially

2-62 (p-ig^-g-J-p)
If p strictly implies g, then

'

g is

false' strictly implies 'p is false'.

implies any proposition, g.

3-43 (pc-p)-j-p
If p materially implies its own

negation, then p is false.

3-44 [pc(gcr)H[gc(pcr)]

3-52 -p-j(pHg)
If p is impossible (not self-con-

sistent, absurd), then p strictly im-

plies any proposition, g.

3-53 (p-J-p)-l~p

If p strictly implies its own nega-

tion, then p is impossible (not self-

consistent, absurd).

3-54 [p-J(gcr)H[gn(pcr)]

The comparison of the last line presents peculiarities similar to those

noted in previous tables. The significance of 3-54 is a matter which can

be better discussed when we have derived other equivalents of p -J (g c r) .

The matter will be taken up in detail further on.

The theorems of this last table, like those in previous tables, are got

by transforming the postulates 1-1, 1-2, 1-3, and 1-4. In consideration

of the importance of this comparison of the two kinds of implication, we

may add certain further theorems which are consequences of the above.

3-45 p-j(gcp) 3-55 ~-p-l(g-{p)

If p is true, then every proposi- If p is necessarily true, then p is

tion, g, materially implies p. strictly implied by any proposi-

tion, g.
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3-46 (-pep) ip 3-56 (-pnp)-*~-p
If p is materially implied by its If p is strictly implied by its own

own denial, then p is true. denial, then p is necessarily true.

3-47 -(pcq)-ip 3-57 -(p4q)-l-~p
If p does not materially imply If p does not strictly imply any

any proposition, q, then p is true. proposition, q, then p is possible

(self-consistent) .

3-48 -(pcg)H-g 3-58 -(p H 9) H 9

If p does not materially imply #, If p does not strictly imply q,

then g is false. then p is possibly false (not neces-

sarily true).

Note that the main or asserted implication, which we have translated

"If . . .
, then . . .", is always a strict implication, in both columns.

3-42 and 3-45-3-48 are among the best known of the "peculiar" the-

orems in the system of Material Implication. For this reason, their ana-

logues in which the implication is strict deserve special attention. Let us

first note that ~ -p 4 (-p -J p) is a special case of 3 55. This and 3 56 give

us at once

- -P = (-P -* P)

This defines the idea of "necessity". A necessarily true proposition

e. g., "I am", as conceived by Descartes is. one whose denial strictly

implies it. Similarly, p-*(-pcp) is a special case of 3-45. And this,

with 3-46, gives

p = (-p c p)

A true proposition is one which is materially implied by its own denial.

This point of comparison throws some light upon the two relations.

The negative of a necessary proposition is impossible or absurd.

~p * (p -J -p) is a special case of 3-52. This, with 3-53, gives

~p =
(p H -p)

And p -{ -p is equivalent to -(p o p). Thus an impossible or absurd propo-

sition is one which strictly implies its own denial and is not consistent

with itself. Correspondingly, we get from 3 42 and 3 43

-p =
(p c -p)

A false proposition is one which materially implies its own negation.

It is obvious that material implication, as exhibited in these theorems,
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is not the relation usually intended by "implies", but it may be debated

whether the corresponding properties of strict implication are altogether

acceptable. We shall revert to this question later. At least, these propo-

sitions serve to define more sharply the nature of the two relations.

Proof of the above theorems is as follows:

3-41 (pcq)-i(-qc-p)
1-1 {p/q; -q/p}: -q p -J p -q (1)

2-62: (l)H-(p.g) H -(.? p) (2)

2-51: (2) =-(p-g) H -[- (/ .(-p)] (3)

1-03: (3)
= Q.E.D.

3 42 -p*(pcq)
1-2 {p/q; -q/p}: p-q-lp (1)

2-62: (IH-p-t-^-g) (2)

1-03: (2)
= Q.E.D.

3 43 (pc -p) -j -p

Similar proof, using 1 3.

3 44 p c (q c r) -J q c (p c r)

1-4 {q/p; p/q; -r/r}: q(p -r) H p(q -r} (1)

2-62: (l)-l-[p(g-r)H-[g(p-r)] (2)

2-51: (2)
= -{p -[-(g-r)]} 4-{ q -[-(p -r)}} (3)

1-03: (3)
= pc-(q-r)*qc-(p-r) (4)

1-03: (4)
= Q.E.D.

3 - 45 p-*(qc-p)

3-42 \-p/p; -q/q] : -(-p} H (-pc-q) (1)

3 .41: (-p c-g)-j[-(-g)c-(-p)] (2)

2-51: (2)
= (-pc-g)H(gcp) (3)

1-6: (l)x(3)-i-(-p-)-i(qcp} (4)

2-51: (4)
= Q.ED.

3 46 (-p cp~) lp
3-43 {-pip}: [-pc -(-p)H-(-p) (1)

2-51: (1)
= Q.E.D.

3-47 -(p cq) *p
2-62 {-pip; pcq/q}: 3-42 -{ -(p eg) ^ -(-p} (1)

2-51: (1)
= Q.E.D.

3 - 48 -(p c q) -{ -q

3-45 {q/p; pfq}: q*(pcq) (1)

2-62: (!)H Q.E.D.
21
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3-52 ~p4(p*q)
2-1 {-q/q}: p-q-tp (1)

1-8: (1)
= -pH~(p-g) (2)

1-02: (2)
= Q.E.D.

3-53 (p-i-p)-l~p

Similar proof, using 1-3.

3-54 [p-*(qcr)]4[q*(pcr)]
1-4 {q/p; p/q; -r/r}: q(p -r) H p(q -r) (1)

1-8: (1)
= ~[pfo-r)H-fo(p-r)] (2)

2-51: (2)
= -{p-Kg-r)]} -i~{g-[-(p-r)]} (3)

1 -02: (3)
=

[p H -(<? -r)] -J [5 < -(p -r)] (4)

1-03: (4)
= Q.E.D.

3-55 ~-p-l(g-Jp)

3 52 {-p/p; -?/?} :
~ -p H (-p H -0 (1)

2-6: (-pH-g)H(gnp) (2)

1-6: (1) x (2) H Q.E.D.

3 56 (-p 4 p) -J ~ -p

3-53 {-p/p}: [-pH-(-p)]H-p (1)

2-51: (1)
= Q.E.D.

3-57 -(p-ig)--~p
2-62: 3-52 -J Q.E.D.

3-58 -(p-{g)-J g

2-62: 3-55 -l Q.E.D.

The presence of this extended analogy between material relations and

strict relations in the system enables us to present the total character of

the system with reference to the principles of transformation, 1-7 and 1-8,

in brief and systematic form. This will be the topic of the next section.

III. THE TRANSFORMATION {-/-I

We have not, so far, considered any consequences of postulate 1-7,

"P -J -p, "If p is impossible, then p is false". They are rather obvious.

4 1 ~ -p -J p

1-7 {-pip}: pH-(-p) (1)

2-51: (1)
= Q.E.D.

If p is necessary, then p is true.

4 12 p-i-~p
2-61 {-pip; p/q}: 1-7 -l Q.E.D.

If p is true, then p is possible.
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4-13 ~-p-}-~p
1-6: 4- 1x4- 12 -{Q.E.D.

If p is necessary, then p is possible.

4-14 p q-lpoq
4-12 {pq/p}: pq-*-~(pq) (1)

1-01: (1)
= Q.E.D.

4-15 (p-*q)*(pcq)
1-7 {p-q/p}: ~(p-g)-f-(p-g) (1)

1-02: (1) . (p-*q)-*-(p-q) (2)

1-03: (2)
= Q.E.D.

4 '16 p Ag-j p + q

1-7 {-p -g/p} : -(-P -q) 4 -(-p -g) (1)

1-04: (1)
= pA? *-(-?-?) (2)

1-05: (2)
= Q.E.D.

4-17 -(p o q) -{ -(p g)

2-62: 4-14 = Q.E.D.

By virtue of theorem 4-15, any strict implication which is asserted

i. e., is the main relation in the proposition may be replaced by a material

implication. And by 4-16, any strict logical sum, A, which should be

asserted, may be reduced to the corresponding material relation, + . The

case of the strict relation "consistent with", o, is a little different. It

follows from 4-17 that for every theorem in the main relation o is denied,

that is, -(. . . o . . .), there is an exactly similar theorem in which the main

relation is that of the logical product, that is, -(. . . x . . .).

It is our immediate object to show that for every strict relation which is

assertable in the system, the corresponding material relation is also assert-

able. It is, then, important to know how these various relations are present

in the system. The only relations so far asserted in any proposition are

-J and =
. Since = is expressible in terms of -J

,
we may take 4 as the

fundamental relation and compare the others with it.

4-21 p H q = -p A g

1-02: p-i q
= ~(p-q-) (1)

2-51: (1) =p -, ? = ~[-(-p)-g] (2)

1-04: (2)
= Q.E.D.

4' 22 p A g = -M g

4-21 {-pip}: -p-iq = -(-p) Ag (1)

2-51: (1)
= Q.E.D.
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For every postulate and theorem in which the asserted relation is -I ,

there is a corresponding theorem in which the asserted relation is A
, and

vice versa.

Consider the analogous relations, c and + .

4 23 p c q
= -p + q

1-03: pcq = -(p-q) (1)

2-51: (1)
= pcq = -H-p)-q] (2)

1-01: (2)
= Q.E.D.

4-24 p+ q
= -p cq

4-23 {-pip} : -pcq = -(-p) + q (1)

2-51: (1)
= Q.E.D.

For every theorem in which the asserted relation is c
, there is a corre-

sponding theorem in wThich the asserted relation is +
, and vice versa.

The exact parallelism between 4-21 and 4-23, 4-22 and 4-24, corrob-

orates what 4-16 tells us: that wherever the relation A is asserted, the

corresponding material relation, +
, may be asserted.

4-25 p4q = -(po-q)

1-02: P 4q = ~(p-q) (1)

2-51: (1)
= p* q

= -[-~(p-q)] (2)

1-01: (2)
= Q.E.D.

4-26 poq = -(p-*-q)

4-25 {-q/q}: p -J -q = -[p o -(-q)] (1)

2-51: (1)
= p-i-q = -(poq-) (2)

2-11: (2H(pH-g)-J-(po?) (3)

2-12: (2)^-(poq)^(p^-q') (4)

2-3: (3)HpogH-(P H-g) (5)

2-61: (4) -i -(p H -q) H p o q (6)

1-06: (5) x(6) = Q.E.D.

For every postulate and theorem in which the relation -i is asserted,

there is a corresponding theorem in which the main relation is o but this

relation is denied: and for every possible theorem in which the relation o

is asserted, there wr
ill be a corresponding theorem in which the main relation

is H but that relation is denied, o and * are connected by negation.

An exact!}
7 similar relation holds between p q and p cq.

1-03 pcq = -(p-q)

4-27 pq = -(pc-q)
Proof similar to that of 4-26, using 1-03 in place of 1-02.
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The parallelism here corroborates 4-17: for every possible theorem in

which the relation o is denied, there is a theorem in which the corre-

sponding logical product is denied. But the implications of 4-1^4-17 are

not reversible, and a theorem in which the relation o is asserted does not

give a theorem in which any material relation is asserted. To put it another

wr

ay : of p, p, and -
~p, the weakest is p and it cannot be further

reduced. But the truth-value of any consistency is [- ~] p oq =
(p q).

The reduction of = to the corresponding material relation, =, is obvious.

4 28 Hypothesis : p =
q. To prove : p = q.

2-11: Hyp. -J (p -i 9) (1)

2-12: Hyp. H (q -J p) (2)

4-15: (l)-l(pcg) (3)

4-15: (2H(gcp) (4)

1-07: (3)x(4) = (p = q)

For every theorem in which the relation = is asserted, there is a cor

responding theorem in which the relation = is asserted.

We have now shown at length that, confining attention to the main

relations in theorems, there are two sets of strict relations which appear

in the system: (1) relations =, -{ , and A which are asserted, and relations

o which are denied; (2) relations o which are asserted, and relations

=
,

-J
, and A which are denied. Wherever a relation of the first described

set appears, it may be replaced by the corresponding material relation.

Any relation of the second set will be equivalent to some relation o which

is asserted its truth-value will be [- ]. Such relations cannot be further

reduced; they do not give a corresponding material relation. But under

what circumstances will relations of this second sort appear? Examination

of the postulates will show that they can occur as the main relation in the-

orems only through some use of 1 7 and its consequences, for example,

p q-ip o
q, p 4 p, and ~ -p H p. In other words, they can occur only

where the corresponding material relation is already present in the system.

Hence for every theorem in the system in which a relation of the type

poq is asserted, there is a theorem in which the corresponding material

relation, p q, is asserted.

Consequently, for every theorem in the system in which the main relation

is strict there is an exactly similar theorem in which the main relation is the

corresponding material relation.

Wherever strict relations appear as subordinate, or unasserted, relations

in theorems, the situation is quite similar. These
%
are reducible to the
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corresponding material relations through some use of 1-8 and its conse-

quences. Note particularly theorem 2-77,

(p 4 g)
= (- ~p -{

-
~g)

= (~ -p H ~
-g)

=
(-q -{ -p) =

(~q H ~p)

The truth-value of any strict relation will, by its definition, be [~] or [~ -]

or [- ~]. And where two such are connected by H or any equivalent rela-

tion, they may be replaced by the corresponding relation whose truth-value

is simply positive or is [-] and this is always a material relation.

We may now illustrate this reduction of subordinate strict relations:

4- 3 [(p * g) -J (r * s)] H [(p c g) -1 (res)]

2-7 {p -q/p; r -s/q} : [-(p -q) -J ~(r -s)] H [-(p -g) H -(r -*)] (1)

1 -02: (1)
=

[(p -J q) -J (r -J )] H [-(p -g) -J -(r -*)] (2)

1-03: (2)
= Q.E.D.

4-J.f [(pAg)-j(rA*)]-i[(p + g)-i(f + *)]

Similar proof, (-p -g) in place of (p -g), etc.

4- 32 [(p o q) H (r o 5)] -J [(p g) H (r s)]

2-75 {pg/p; r*/g}: [- ~(p g) H - ~(r 5)] -J [(p g) -J (r 5)] (1)

1-01: (1)
= Q.E.D.

4- 33 [(p * g) -* (r * 5)] -I [(p c g) c (re*)]

4-15: [(pcg)-i(rc5)]-l[(pcg)c(rc5)] (1)

1-6: 4-3 x(l)i Q.E.D.

-#-J4 [(p Ag) -j (r AS)] -1 [(p + g) c (r + *)]

Similar proof, using 4-31 in place of 4-3.

4- 35 [(p o g) -} (r 05)] -J [(p g) c (r 5)]

Similar proof, using 4-32.

Note that as a subordinate relation, p o q reduces directly.

In theorems 4 3-4 32, postulate 1 8 only has been used, and the reduc-

tion of strict relations to material relations is incomplete. In theorems

4 33-4 35, postulates 1 8 and 1 7 have both been used, and the reduction

is complete. In these theorems, dyads of dyads are dealt with. The

reduction extends to dyads of dyads of dyads, and so on. We may illustrate

this by a single example which is typical.

Hypothesis: [(p * g) -4 (-p A g)] H [(p o -g) -J -(p -J g)]

To prove: [(p c g) c (-p + g)] c [(p -g) c -(p c g)]

(The hypothesis is true, though it has not been proved.)

2-71 {p -q/p', p -q/q] : [-(p -q) -J -(p -g)] -J [~(P -q) ~(P -?)] (1)

1-02, 1-03, 1-04, 1-05, and 2-51:

(1)
=

((p c g) -J (-p + g)] -J [(p -J g) -J (-p A g)] (2)
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1-6: (2)*Hyp.-l[(pcq)4(-p+q)]*[(po-q)4-(piq)] (3)

2-72 {p -q/p; p -q/q} : [- ~(p -g) -J
- ~(p -g)] -{ [(p -9) -j (p -g)] (4)

1-01, 1-02, 1-03, and 2-51:

(4)
=

[(p o -g) -l -(p -J g)] -J [(p -g) * -(p c g)] (5)

1-6: (3)x(5)-i[(pcg)-J (-p+g)]-J [(p-g)H-(pcg)] (6)

4-33: (6)-J Q.E.D.

In any theorem in which ~p is related to ~g, or - ~p to -
~g, or ~ -p to

~
-g,

~ may be replaced by -. This follows immediately from 2-77. We
illustrate briefly the reduction in those cases in which ~r, or -

~r, or ~ -r,

is related to p o g, or p A g, or p -J g.

4-J6 (p og-j- ~r) -{ (p g-J r)

2-75 fp g/p; r/g} : [- -(p g) H ~r] -{ (p g -J r) (1)

1-01: (1)
= (pogn-~r)H(pg-*r) (2)

4-15: (pq-ir) 4 (pqcr) (3)

1-6: (2) x (3) -i Q.E.D.

4-J7 (p Ag-{ ~r) -J (p+ gc-r)

2-7 {-p -g/p; r/g} : [~(-p -g) -J ~r] -l [-(-p -g) -J -r] (1)

4.15: [-(-p -g) -J -r] -I [-(-p -g) c -r] (2)

1-6: (l)x(2)-j[~(-p-g)-i~rH[-(-p-g)c-r] (3)

1-04 and 1-05: (3)
= Q.E.D.

A dyad of triadic strict relations, e. g., p o (g r) -l g o (p r), reduces

just like a dyad of dyads, because a triadic strict relation is a dyadic strict

relation with a dyadic material relation for one member. But a triad

of dyadic strict relations behaves quite differently. Such is postulate 1 6,

(p-Jg)(g-*r)-{(p-lr)

This does not look like a strict triad, but it is, being equivalent to

(p -I g) -J [(g -J r) c (p ^ r)]

which obviously has the character of strict triads generally. The sub-

ordinate relations in such a triad cannot be reduced by any direct use of

1-8 and its consequences. However, all such relations can be reduced.

The method will be illustrated shortly by deriving

(pcg)(gcr)c(pcr)
from the above.

What strict relations, then, cannot be reduced to the corresponding

material relations? The case of asserted relations has already been dis-
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cussed. For subordinate relations, the question admits of a surprisingly

simple answer. All the relations of the system can be expressed in terms

of some product and the various truth values the truth values of ~
-p, p,

-
~p, -p, and ~p. Let us remind ourselves:

poq = -~(pq) p q
= -

-(p q)

p 4 q
= ~(p -q) p c q

= -(p -q)

p A q
= ~(-p -q) p + q

= -(-p -q)

The difference between the truth-value of p and that of -p, between ~p

and ~ -p, between - ~p and - ~
-p, does not affect reduction, because ~ -p

can be regarded as ~ -(p) or as ~(-p);
- ~ -p as - ~

-(p} or as -
~(-p);

and p is also -(-p). Hence we may group the various types of expression

which can appear in the system under three heads, according to truth-value:

H or [~ -] [ ] or [-] [- ~] or [-
-

-]

p*q pcq
p =

q p = q

p*q p+q
pq poq

. -(p o 9) -(P q)

-(p + q) -(p*q)

-(p = q) -(p =
q)

-(pcq) ~(p-*q)

~p -p p
~ -p p p

In this table, the letters are quite indifferent: replacing either letter by

any other letter, or by a negative, or by any relation, throughout the table,

gives a valid result. The blank spaces in the table could also be filled;

for example, the first line in the third column would be - ~ -(p -q). But,

as the example indicates, the missing expressions are more complex than

any which are given, and possess little interest. The significance of the

table is this: //, in any theorem, two expressions which belong in the same

column of this table are connected, then these expressions may be reduced by

postulate 1-8 and its consequences. For, by 2-77, a relation of any two in

the same column gives the corresponding relation of the corresponding two

in either of the other columns. But any theorem which relates expressions

which belong in different columns of this table is not thus reducible, since

any such difference of truth-value is ineradicable. This table also sum-
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marizes the consequences of postulate 1-7: any expression in the table

gives the expression on the same line with it and in the next column to the

right. It follows that expressions in the column to the left also give the

expressions on the same line in the column to the right, since -J is transitive.

Just as postulate 1-7 is the only source of asserted strict relations

which are not replaceable by the corresponding material relations, so also

the only theorems containing irreducible subordinate relations are con-

sequences of 1-7. For this postulate is the only one in which different

truth-values are related, and is the only assumed principle by which an

asserted (or denied) truth-value can be altered. But if we simply substi-

tute - for ~ in 1 7, it becomes the truism, -p -* -p. As a consequence, for

every proposition in the system which contains strict relations or the truth-

values, [~], [~ -], [- ~], or [- ], in any form, in such wise that these truth-

values cannot be reduced to the simple negative, [-], or the simple positive

(the truth-value of p), by the use 1-8, the theorem which results if we

simply substitute - for ~ in that proposition is a valid theorem. Or, to

put it more clearly, if less accurately; if any theorem involve [~], explicitly

or implicitly, in such wise that it cannot be reduced to [-] by the use of 1-8,

still the result of substituting
~ for - is valid. For example, 4 13, ~ -p -i p,

cannot be reduced by 1 8
; p and - ~p are irreducibly different truth-

values. But substituting
- for ~, we have -(-p} -J -(-p), and hence -(-p)

c-(-p), or pep. Propositions such as the pair
~ -p -J p and -(-p)

c-(-p) may be called "pseudo-analogues". If we reduce completely, so

far as possible, all the propositions which involve [~] or strict relations, by
the use of 1 7 and 1 8 and their consequences, and then take the pseudo-

analogues of the remaining propositions, we shall find such pseudo-analogues

redundant. They will all of them already be present as true analogues of

propositions which are completely reducible. This transformation by

means of postulates 1 7 and 1 8, by which strict relations give the cor-

responding material relations, may be represented by the substitution

scheme

peg, p = q, -(pq), p+q, -p, p, -(p)

p -I q, p =
q, -(p O g), p A q, ~p,

~
-p, -(- ~p)

We put -(p o q) and -(p q), -(- ~p) and -(p), because p o q as a main rela-

tion in theorems is reducible only when it is denied, and - ~p is reducible

only through its negative. As we have now shown (except for triads of

dyads, the reduction of which is still to be illustrated), propositions involving
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expressions below the line are still valid when the corresponding expressions

above the line are substituted.

The transformation by {-/~\ of all the assumptions and theorems of the

system of Strict Implication which can be thus completely reduced, and the

rejection of remaining propositions which involve expressions below the line

(or the substitution for them of their pseudo-analogues}, gives precisely the

system of Material Implication.

All the postulates and theorems of Material Implication can be derived

from the postulates and definitions of Strict Implication: the system of

Strict Implication contains the system of Material Implication. We may
further illustrate this fact by deriving from previous propositions the

postulates and definitions of the calculus of elementary propositions as

it appears in Principia Mathematical

4 41

4 42

4 43

p c q = -p + q

is theorem 4-23.

p q
= -(-p + -q)

1-05 {-p/p; -q/q}: -p + -q = -[-(-p) -(-?)]

2-51: (1) =-p + -q =
-(pq-)

2-63: (2) =-(-p + -
g) =-(-(pq-)}

2-51: (3)
= Q.E.D.

(p = q)
= (pcq)(qcp)

is the definition, 1-07.

p + pcp
3-23: p + p-lp

(Principia, *1-01)

(Principia, #3-01)

(1)

(2)

(3)

(Principia, *4-01)

(Principia, #1-2)



The System of Strict Implication 315

For the proof of the last postulate in the set in Principia Mathematica

certain lemmas are needed which are of interest on their own account.

4-51 p qcr = pc(qcr) = qc(pcr)
1-03 {pqfp; r/q}: pqcr = -[(pq)-r] (1)

2-91 and 2 -9: (1)
= pqcr =

-[p(q-r}\
= -[q(p -r)] (2)

2-51: (2)
= pqcr = -{p-[-(q-r-)}} = -{q -[-(p -r)]} (3)

. 1-03: (3)
= Q.E.D.

4-52 p q-tr = p* (qcr) =
q-i (per)

1-02 {p q/p', r/q} : pq-ir = ~[(p q) -r]

Remainder of proof, similar to the above.

4- S3 [(pcq)p]4q
2-4 {pcq/p}: (peg) -{(peg) (1)

4-52 {pcq/p; p/q; q/r}: (1)
= Q.E.D.

It is an immediate consequence of 4-53 that
"
If p is asserted and p cq

is asserted, then q may be asserted", for, by our assumptions, if p is asserted

and p c q is asserted, then [(p c q)p] may be asserted. And if this is asserted,

then by 4-53 and our operation of "inference", q can be asserted. But

note that the relation which validates the assertion of q is the relation -{ in

the theorem. This principle, deduced from 4-53, is required in the system

of Material Implication (see Principia, *!! and *1-11).

4-54 (~pc~g)-i(gcp)
4-3: 2-21 -j Q.E.D.

4-55 (p -J g) -J (p r c q r)

1 6 i-r/r }
: (p 4 g) (q -I -r) -J (p -J -r) (1)

4-52: (1)
= (p -5 g) -J [(q -l -r) c (p -J -r)} (2)

1-02 and 2-51: (2)
= (p -{ g) -i [~(g r) c ~(p r}} (3)

4-54: ~(gr) c~(pr) -{ (p r cgr) (4)

1-6: (3) x (4) -J Q.E.D.

4 56 (p c g) c (p r c q r)

4-55 {(p cq)p/p}: 4-53 * [(p cg)p]r cgr (1)

2-91: (1)
= [(pcq)(pr)]cqr (2)

4-51: (2)
= Q.E.D.

4 57 p cq = -q c-p
4-3: 2-62 -i (peg) -i(-gc-p) (1)

4-3: 2-6-J(-gc-p)-J (pcg) (2)

1-06: (1) x(2) = Q.E.D.
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4-58 (pcq)(qcr)c(pcr)
4-56 {-r/r}: (p cq) c (p-r cq-r) (1)

4-57: (1)
= (peg) c[-fo-r) c-(p-r)] (2)

1-03: (2)
= (peg) c [foe r)c (per)] (3)

4-51: (3)
= Q.E.I5.

4 58 is the analogue, in terms of material relations, of 1 6. The method

by which we pass from 1-6 to 4-58 illustrates the reduction of triads of

strict dyads in general. This reduction begins in the first line of the proof

of 4-55. Here 1 6 is put in the form

(P<*q)4[(q*r)c(p-ir)]12345
The relation numbered 4 is already a material relation. This is character-

istic of strict triads. Relations 3 and 5 are reduced together by some

consequence of 1-8, in a form in which the asserted relation is material.

Then, as in 4 56, relations 1 and 2 are reduced together by the use of 4 53

as a premise. This use of 4-53 is quite puzzling at first, but will become

clearer if we remember its consequence,
"
If p is asserted and p c q is asserted,

then q may be asserted". This method, or some obvious modification of it,

applies to the reduction of any triad of strict dyads which the system gives.

We can now prove the last postulate for Material Implication.

4 59 (q c r) c [(p + 9) c (p + r}] (Principia, *1 6)

4-58 {-pip}: (-pcg)focr)c(-pcr) (1)

4-51: (1) = (gcr)c[(-pc(7)c(-pcr)] (2)

4-24: (2)
= Q.E.D.

These are a sufficient set of symbolic postulates for Material Impli-

cation, as the development of that system from them, in Principia Mathe-

matica, demonstrates. However, in the system of Strict Implication, those

theorems which belong also to Material Implication are not necessarily

derived from the above set of postulates. They can be so derived, but the

transformation {-/*} produces them, more simply and directly, from their

analogues in terms of strict relations.

IV. EXTENSIONS OF STRICT IMPLICATION. THE CALCULUS OF CONSIST-

ENCIES AND THE CALCULUS OF ORDINARY INFERENCE

From the symmetrical character of postulate 1-8, and from the fact

that postulate 1-7 is converted by negating both members, i. e., p-i- ~p,
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it follows that, since the transformation {-/-} is possible, an opposite

transformation, {~/-}, is possible. And since implications are reversed

by negating both members, those expressions which are transformed directly

by {-/~} will be transformed through their negatives by {~/-|, while those

expressions which are transformed through their negatives by {-/~} will

be transformed directly by { ~/- }
. Hence wre have

(p c q), -(p = q), pq, -(p + q) -(-p), -(p), p

This substitution scheme may be verified by reference to the table on

page 312. The transformation {-/~} represents the fact that expressions

in the column to the left, in this table, give expressions in the middle column :

{~/-} represents the fact that expressions in the middle column give ex-

pressions in the column to the right. {-/~} eliminated strict relations:

{*/-} eliminates material relations. As in the previous case, so here, a

dyad of dyadic relations, or a relation connected with p, -p, ~p, etc., can

be transformed by 1-8 and its consequences when and only when the

connected expressions appear in the same column of that table. Thus the

transformation {~/-} is subject to the same sort of limitation as is {-/-}.

The transformation {~/-}, eliminating material relations, has already

been illustrated in those tables in Section II, in which theorems in terms of

strict relations were compared with analogous propositions in terms of

material relations. Theorems in the right-hand column of those tables

result from those in the left-hand column by the transformation {-/-}.

The proofs of 3-11, 3-12, 3-13, 3-14, 3-31, 3-32, 3-33, 3-34, 3-52, 3-53,

and 3 55 indicate the method of this transformation. Theorem 3 54 indi-

cates a limitation of it. As we have noted, triadic strict relations are not

expressible in terms of strict dyads alone. Consequently, in the case of

triadic relations, the transformation {~/-} cannot be completely carried

out. This is an important limitation, since postulate 1 6, which is necessary

for any generality of proof, is a triadic strict relation. It means that any

system of logic in which there are no material relations cannot symbolize

its own operations. Since strict relations are the relations of intension,

this is an important observation about calculuses of intension in general.

The vertical line in the substitution scheme is to indicate that the

transformation {~/-} is arbitrarily considered to be complete when no

material relations remain in the expression, p and -p will be transformed

when connected with a material relation which is transformed; when not
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so connected, p and -p remain. They could be transformed in all cases,

but the result is needlessly complex and not instructive.

The system, or partial-system, which results from the transformation

{~/-} may be called the Calculus of Consistencies. It can be generated

independently by the following assumptions:

Let the primitive ideas be: (1) propositions, p, q, r, etc., (2) -p, (3) ~p,

(4) p o q, (5) p =
q.

Let the other strict relations be defined :

II. p * q
= -(p O -g)

For postulates assume :

III. p o q 4 q o p

IV. q o p 4 - "p

V. - ~p -I p o p

VI. p = -(-p)

Assume the operations of "Substitution" and "Inference" as before,

but in place of "Production" put the following: If p -J q is asserted and q -t r

is asserted, then p -* r may be asserted. By this principle, proof is possible

without the introduction into the postulates of triadic relations.

The system generated by these assumptions is purely a calculus of

intensions. It is the same which would result from performing the trans-

formation {~/-} upon all the propositions of Strict Implication which

admit of it, and rejecting any which still contain expressions, other than p

and -p, below the line. It contains, amongst others, all those theorems

concerning strict relations (except the triadic ones) which were exhibited

in Section II in comparison with analogous propositions concerning material

relations.

More interest attaches to another partial-system contained in Strict

Implication. If our aim be to create a workable calculus of deductive

inference, we shall need to retain the relation of the logical product, p q,

but material implication, p c q, and probably also the material sum, p * q,

may be rejected as not sufficiently useful to be worth complicating the

system with. The ideas of possibility and impossibility also are unnecessary

complications. Such a system may be called the Calculus of Ordinary

Inference. The following assumptions are sufficient for it.



The System of Strict Implication 319

Primitive Ideas: (1) Propositions, p, q, r, etc., (2) -p, (3) p -J q, (4) p q,

(5) p =
q.

Definitions:

A. p A q
= -p -j q

B. p O g = -(p -{ -g)

C. (p
=

q)
= (2Mg)(g-*p)

[D. p+ q = -(-p -q)] Optional.

Postulates:

E. (-p * g) -J (-g * p)

F. p qlp
G. p -ip p

H. p(g r) -J g(p r)

I. p H -(-p)

J. (p-lg)(?-5r)-i(p-{r)

K. p q-lp oq

L. (p q-ir s)
= (p oq-tr os)

All of these assumptions are propositions of the system of Strict Impli-

cation. A. is 4-22, B. is 4-26, C. is 1-06, and D. is 1-05; E. is 2-3, F. is

2-1, G. is 1-3, H. is 1-4, I. is 1-5, J. is 1-06, K. is 4-26, and L. is an im-

mediate consequence of 4 32 and 4 35. The Calculus of Ordinary Inference

is, then, contained in the system of Strict Implication. It consists of all

those propositions of Strict Implication which do not involve the relation

of material implication, peg [or the material logical sum, p + q]. But

where, in Strict Implication, we have ~p, we shall have, in the Calculus of

Ordinary Inference, -(pop} or p-t-p. Similarly p will be replaced

by ~(~P o-p) or -p -i p, and p by p op or -(p H -p). In other words,

for 'p is impossible' we shall have 'p is not self-consistent' or 'p implies

its own negation'; for 'p is necessary' we shall have 'the negation of p is

not self-consistent
'

or
'

the negation of p implies p
'

;
and for

'

p is possible
'

we shall have 'p is self-consistent
'

or 'p does not imply its own negation'.

The Calculus of Ordinary Inference contains the analogues, in terms of

p q, p A q, and p H q, of all those theorems of Material Implication which

are applicable to deductive inference. It does not contain the useless and

doubtful theorems such as "A false proposition implies any proposition",

and "A true proposition is implied by any proposition". As a working



320 A Survey of Symbolic Logic

system of symbolic logic, it is superior to Material Implication in this

respect, and also in that it contains the useful relation of consistency, p o q.

On the other hand, it avoids that complexity which may be considered an

objectionable feature of Strict Implication.

The system of Strict Implication admits of extension to propositional

functions by methods such as those exhibited in the last chapter. For

the working out of this extension, several modifications of this method are

desirable, but, for the sake of brevity, we shall adhere to the procedure

which is already familiar so far as possible. In view of this, the outline

to be given here should be taken as indicative of the general method and

results and not as a theoretically adequate account. Since, as we have

demonstrated, the system of Material Implication is contained in Strict

Implication, It follows that, with suitable definitions of Hpx and H<px,

the whole theory of propositional functions, as previously developed, may
be derived from Strict Implication. TL<px will here be interpreted more

explicitly than before,
"

<px is true in all (actual) cases," or
"

<px is true of

every x which 'exists'". And 2<px will mean "
<px is true in some (actual)

case", or "There 'exists' at least one x for which <px is true". The novelty

of the calculus of propositional functions, as derived from Strict Implica-

tion, will come from the presence, in that system, of ~p,
-
~p,

~ -p, and the

strict relations. We might expect that if tpx is a propositional function,

~<px would be a propositional function. But such is not the case: ~<px is a

proposition. For example, "It is impossible that 'x is a man but not

mortal'" is a proposition although it contains a variable. So is "Nothing

can be both A and not-A", which predicates the impossibility of "x is A
and x is not-A". It would be an error to suppose that all the propositions

which contain variables are such because they involve the idea of impossi-

bility, or necessity, but the most notable examples, the laws of mathe-

matics, are propositions, and not propositional functions, for precisely this

reason. When stated in the accurate hypothetical form i. e., as the

implications of certain assumptions they are necessary truths.

Since ~
<px is a proposition, <px, <px, and all the strict relations of

propositional functions will be propositions. If <px and ^x are propositional

functions, then

<px o \l/x is the proposition
-
~(<px x \j/x);

<px A \l/x is the proposition ~(-<px x>

(f>x H \f/x is the proposition ~(<px x-
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We shall have the law, ~
<px -J II - tpx, "If tpx is impossible, then it is

false in all cases". Hence also, 2<px -i- ~(px, "If <px is sometimes true,

then <px is possible". The first of these gives us one most important con-

sequence,

\f/x) -J Hx ( <f>x c \l/x)

"If it is impossible that <px be true and \l/x false, then in no (actual) case

is <px true but $x false", or "If <px strictly implies $x, then <f>x formally

implies fa". This connects the novel theorems of this theory of prepo-

sitional functions with the better known propositions which result from

the extension of Material Implication. Similarly we shall have

( <px A fa} ^H.x (<f>x + fa]

and S.r(<p * fa} H (<px o fa}

If we use z(<pz) to denote the class determined by <pz, that is, the class

of all re's such that <px is true, then we derive the logic of classes from this

calculus of prepositional functions, by the same general type of procedure

as that exhibited in Section III of Chapter IV. If we let a =
z(<pz~),

j8
= ztyz), the definitions of this calculus will be as follows:

(xn e a)
=

<pxn

"x is a member of the class a, determined by the function <pz" means
"

<px n is true".

(a-i /8)
=

(tfos-t \l/x)

(aC|8) = Ux(<pXC^x)

(a =
]8)

=
(<px

= $x)

(a = ]8)
= Ux (<px = fx)

-a = x(-<px), or -a = x-(x6 a)

(a x /3)
= x(<px x \l/x), or (a x

/3)
= #[(# e a) x (x e /3)]

(a + |8)
= f(^ + #e), or (a +

|8)
= ^[(* c a) + (a; e |8)]

1 = &($x * far)

= -1

a c /3 is the relation "All members of a are also members of /3" a relation

of extension. It is defined by "In every (actual) case, either <px is false

or \l/x is true"; or "There is no (actual) case in which <px is true and $x

false" Tlx(<px c\J/x)
= Ux (-<px + ^x~)

= n2 -(<px x-^a;). a -J /3 is the cor-

responding relation of intension : it is defined by
"
Necessarily either <px is

false or \f/x is true", or "It is impossible that <px be true and fa false",

22
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that is, (<px4\l/x)
=

(-<> A ^.r)
=

~(<f>x x-^a;). a -J /3 may be correctly

interpreted "The class-concept of a, that is, <f>, contains or implies the

class-concept of /3, that is, \l/". That this should be true may not be at

once clear to the reader, but it will become so if he study the properties of

a * j8, and of <px H \f/x, in this system.

Since we have (<px -J \f/x) -I Hx(<px c $x}

we shall have also (-{/8)-{(aCj8)

If the class-concept of a implies the class-concept of /3, then every member

of a will be also a member of /3. The intensional relation, -J
, implies the

extensional relation, c. But the reverse does not hold. The old "law" of

formal logic, that if a is contained in /3 in extension, then /3 is contained in a

in intension, and vice versa, is false. The connection between extension

and intension is by no means so simple as that.

This discrepancy between relations in extension and relations in inten-

sion is particularly evident in cases where one of the classes in question is

the null-class, 0, or the universe of discourse, 1. As was pointed out in

Chapter IV, we shall have for every "individual", x,

x e 1, and -(x e 0)

Also, for any class, a, we shall have

a c 1, and c a

These last two will hold because, since fa; -J fa; is always true when significant,

-(fa; -J fa-) always false, we shall have, for any function, <px,

x <px c x

and nz[-(fa; -J fa;) c <px]

We shall have these because "A false proposition materially implies any

proposition ", and
" A true proposition is materially implied by any propo-

sition." But since it does not hold that "A false proposition strictly implies

any proposition", or that "A true proposition is strictly implied by any

proposition ", we shall not have

<px -{ (fa; -J fa;)

or -(fa; -J fa;) -J <px

And consequently we shall not have

a H 1, or -* a

If 7 is a null class, we shall have
"
All members of 7 are also members of j3,
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whatever class ft may be". But we shall not have "The class-concept of 7

implies the class concept of ft, whatever class ft may be". The implications

of a class-concept are not affected by the fact that the class has no members.

The relation, a = ft, is material or extensional equivalence, "The

classes a and ft consist of identical members"; a =
ft is strict or intensional

equivalence, "The class-concept of a is equivalent to the class-concept of ft".

It is obvious that

(a =
ft} -* (a = ft}

but that the reverse does not hold. The relation between intensions and

extensions is unsymmetrical, not symmetrical as the medieval logicians

would have it. And, from the point of view of deduction, relations of

intension are more powerful than relations of extension.

a+ ft and x/3 are relations of extension the familiar "logical sum"

and "logical product" of two classes. What about the corresponding

relations of intension? This most important thing about them there are

none. Consider the equivalences,

(a A
ft}

= x(<px A $x) = x[(x e a) A (x e ft}]

and (ao ft}
=

x(<px o $x) = x[(x t at) o (x e ft}]

<px o\f/x is a proposition the proposition
-

~(<px x^x}, "It is possible that

<px and \f/x both be true". And being a proposition, either it is true of

every x or it is true of none. So that a o ft, so defined, would be either

1 or 0. Similarly <px A \f/x is a proposition, either true of every x or false

of every x; and a A ft would be either 1 or 0. Consequently, a A ft and

a o ft are not relations of a and (8 at all. The product and sum of classes

are relations of extension, for which no analogous relations of intension

exist. This is the clue to the failure of the continental successors of Leibniz.

They sought a calculus of classes in intension : there is no such calculus, unless

it be confined to the relations a -i ft and a =
ft. Holland really came in

sight of this fact when he pointed out to Lambert the difficulties of logical

"multiplication" and logical "division". 7

The presentation of the calculus of prepositional functions and calculus

of classes here outlined, and of the similar calculus of relations, would

involve many subtle and vexatious problems. But we have thought it

worth while to indicate the general results which are possible, without dis-

cussing the problems. But there is one important problem which involves

the whole question of strict implication, material implication, and formal

7 See above, p. 35.
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implication, which must be discussed the meaning of "implies". This

is the topic of the next section.

V. THE MEANING OF "IMPLIES"

It is impossible to escape the assumption that there is some definite

and "proper" meaning of "implies". The word denotes that relation

which is present when we "validly" pass from one assertion, or set of

assertions, to another assertion, without any reference to additional "evi-

dence". If a system of symbolic logic is to be applied to such valid infer-

ence, the meaning of "implies" which figures in it must be such a "proper"

meaning. We should not hastily assume that there is only one such

meaning, but we necessarily assert that there is at least one. This is no

more than to say: there are certain ways of reasoning that are correct or

valid, as opposed to certain other ways which are incorrect or invalid.

Current pragmaticism in science, and the passing of "self-evident

axioms" in mathematics tend to confuse us about this necessity. Pure

mathematics is no longer concerned about the truth either of postulates or

of theorems, and definitions are always arbitrary. Why, then, may not

symbolic logic have this same abstractness? What does it matter whether

the meaning of "implies" which figures in such a system be "proper" or

not, so long as it is entirely clear? The answer is that a system of symbolic

logic may have this kind of abstractness, as will be demonstrated in the next

chapter. But it cannot be a criterion of valid inference unless the meaning,

or meanings, of "implies" which it involves are "proper". There are

two methods by which a system of symbolic logic may be developed: the

non-logistic method exemplified by the Boole-Schroder Algebra in Chapter

II, or the logistic method exhibited in Principia Mathematica and in the

development of Strict Implication in this chapter. The non-logistic method

takes ordinary logic for granted in order to state its proofs. This logic which

is taken for granted is either "proper" or the proofs are invalid. And if

the logic it takes for granted is not the logic it develops, then we have a

most curious situation. A symbolic logic, logistically developed i. e.,

without assuming ordinary logic to validate its proofs is peculiar among
mathematical systems in that its postulates and theorems have a double

use. They are used not only as premises from which further theorems are

deduced, but also as rules of inference by which the deductions are made.

A system of geometry, for example, uses its postulates as premises only;

it gets its rules of inference from logic. Suppose a postulate of geometry
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to be perfectly acceptable as an abstract mathematical assumption, but

false of "our space". Then the theorems which spring from this assump-

tion may be likewise false of "our space". But still the postulate will

truly imply these theorems. However, if a postulate of symbolic logic,

used as a rule of inference, be false, then not only will some of the theorems

be false, but some of the theorems will be invalidly inferred. The use of

the false postulate as a premise will introduce false theorems; its use as a

rule of inference will produce invalid proofs.
"
Abstractness

"
in mathe-

matics has always meant neglecting any question of truth or falsity in

postulates or theorems; the peculiar case of symbolic logic has thus far

been overlooked. But we are hardly ready to speak of a "good" abstract

mathematical system whose proofs are arbitrarily invalid. Until we are,

it is requisite that the meaning of "implies" in any system of symbolic

logic shall be a "proper" one, and that the theorems -used as rules of

inference shall be true of this meaning.

Unless "implies" has some "proper" meaning, there is no criterion of

validity, no possibility even of arguing the question whether there is one or

not. And yet the question What is the "proper" meaning of "implies"?

remains peculiarly difficult. It is difficult, first, because there is no common

agreement which is sufficiently self-conscious to decide, for example, about

"material implication" or "strict implication". Even those who feel quite

decided in the matter are easily confused by the subtleties of the problem.

And, second, it is difficult because argument on the topic is necessarily

petitio principii. One must make the Socratic presumption that one's

interlocutor already knows the meaning of "implies", and agrees with

one's self, and needs only to be made aware of that fact. One must sup-

pose that the meaning in denotation is clear to all, as the meaning of "cat"

or "life" is clear, though the definition remains to be determined. If two

persons should really disagree about "implies" should have different

"logical sense" there would be nothing to hope for from their argument.

In consideration of this peculiar involution of logical questions, the

best procedure is to exhibit the alternatives in some detail. When the

nature of each meaning of "implies", and the consequences of taking it to

be the "proper" one have been exhibited, the case rests.

We have already drawn attention, both in this chapter and in Chapter II,

to the peculiar theorems which belong to all systems based on material

implication. We may repeat here a few of them:

(1) A false proposition implies any proposition; -p c (p c q)
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(2) A true proposition is implied by any proposition; q c (p cq)

(3) If p does not imply q, then p is true; -(p cq) cp
(4) If p does not imply q, then q is false; -(p c

</)
c -q

(5) If p does not imply <?,
then p implies that q is false;

-(pcg)c(pc-g)

(6) If p does not imply 9, then 'p is false
'

implies q; -(p cq) c (-p c q)

(7) If p and q are both true, then p implies q and q implies p;

pqc(pcq)(qcp)

(8) If p and g are both false, then p implies q and q implies p;

-p-qc(pcq)(qcp)

These sufficiently characterize the relation of material implication. It is

obviously a relation between the truth-values of propositions, not between

any supposed content or logical import of propositions, "p materially

implies q" means "It is false that p is true and q false". All these the-

orems, and an infinite number of others just as "peculiar" follow necessarily

from this definition. The one thing which this relation has in common

with other meanings of "implies" a most important thing of course is

that if p is true and q is false, then p does not materially imply q.

As has been said, there are any number of such "peculiar" theorems

in any calculus of propositions based on material implication.
8 These the-

orems do not admit of any application to valid inference. In a system of

material implication, logistically developed, there is nothing to prohibit

their being used as rules of inference, but when so used they give theorems

which are even more peculiar and quite as useless. If we apply these

theorems to non-symbolic propositions, we get startling results. "The

moon is made of green cheese" implies "2 + 2 = 4", because q c (p c q).

Let q be "2 + 2 = 4" and p be "The moon is made of green cheese".

Then, since "2 + 2 = 4" is true, its consequence above is demonstrated.

"If the puppy's teeth are filled with zinc, tomorrow will be Sunday".

Because the puppy's teeth are not filled with zinc, and, anyway, it happens

to be Saturday as I write. A false proposition implies any, and a true

proposition is implied by any.
9

There are, then, in the system of Material Implication, a class of propo-

sitions, which do not admit of any application to valid inference. And
8
Every theorem gives others by substitution, as well as by being used as a rule of

inference. And there are ways whereby, for any such theorem, one other which is sure to

be "peculiar" also can be derived from it. And also, it can be devised so that no result of

one shall be the chosen result of any other. Hence the number is infinite.

9 Lewis Carroll wrote a Symbolic Logic. I shall never cease to regret that he had not

heard of material implication.
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all the other, non-" peculiar ", theorems of Material Implication find their

analogues in other systems. Hence the presence of these peculiar and use-

less theorems is a distinguishing mark of systems based upon material

implication.

There can be no doubt that the reason why the relation of material

implication is the basis of every calculus of propositions except MacColl's

and Strict Implication is a historical one. Boole developed his algebra for

classes; he then discovered that it could also be interpreted so as to cover

certain relations of propositions. Peirce modified Boole's algebra by intro-

ducing the relation of inclusion, which we have symbolized by c . a c b

has all the properties of the relation between a and b when every member of

a is also a member of b. It has one notable peculiarity: if a is a class which

has no members a "zero" class then for any class x, a ex. Now the

idea of "zero" in any branch of mathematics seems a little more of an

arbitrary convention than the other numbers. The arithmetical fact that

< 8 seems "queer" to children, and it would, most likely, have seemed

"queer" to an ancient Roman. Once O.is defined, its "queer" properties,

as well as the obvious one, 8 + = 8, are inevitable. It is similar with

the "null class", a = 0, "That which is both a and nothing is nothing",

is necessary. And (a b =
a)

= (a c6), "'That which is both a and b,

is a' is equivalent to 'All a is &'", leads to the necessary consequence

Oca. If there are no sea serpents, then "All sea serpents are arthropods"

necessarily follows. This consequence seems more "queer" and arbitrary

because it is a relation of extension with no analogue in intension. The

concept "sea serpent" does not imply the concept "arthropod" as has

been pointed out, -J a does not hold. And in our ordinary logical thinking

we pass from intension to extension and vice versa without noting the

difference, because the relations of the two are so generally analogous.

But once we make the necessary distinction of relations in extension from

relations in intension, it is clear that c a in extension is a necessary conse-

quence of the concept of the null-class. Entirely similar remarks apply to

the proposition a c 1, except that "a is contained in everything" does not

seem so "queer".

Boole suggested that the algebra of classes be reinterpreted as a calculus

of propositions by letting a, b, c, etc., represent the times when the proposi-

tions A, B, C, etc., are true. Then Peirce added the postulate which

holds for propositions but not for classes (or for propositional functions),

a =
(a

=
1). A proposition is either true in all cases, or true in none.
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The class of cases in which any proposition is true is either or 1. This

gives the characteristic property of the Two-Valued Algebra. If we add

to this the interpretation of a c b,
"
All cases in which A is true are cases in

which B is true", or loosely "If A, then B", we have the source of the

peculiar propositions of Material Implication. For Oc&, a c 1, OcO,
c 1, and 1 c 1 follow from the laws which are thus extended from classes

to propositions. A false proposition [= 0] implies b. And a implies any

true proposition [= 1]. Of any two true propositions [= 1] each implies

the other. Of any two false propositions [= 0] each implies the other.

And any false proposition implies any true one. "A false proposition

materially implies any proposition" means precisely "If there are no

cases in which A is true (if a =
0) then all cases in which A is true are

also cases in which B is true". It does not mean "B can be inferred from

any false proposition". "A true proposition is materfally implied by any

proposition" means only, "If B is true [= 1], then the cases in which A is

true are contained among the cases (i. e., all cases) in which B is true".

It does not mean "Any true proposition can be inferred from A ". Inference

depends upon meaning, logical import, intension, a c b is a relation purely

of extension. Is this material implication, a c b, a relation which can

validly represent the logical nexus of proof and demonstration?

Formal implication Ux(<pxc \f/x) is defined in terms of material implication.

It means "For every value of x, px materially implies \f/x". Choose any
value of x, say for convenience z, and unless <pz is false, $z is true. Cer-

tainly this relation approximates more closely to the usual meaning of

"implies". But the precisely accurate interpretation of ILx (<px c\{/x)

depends upon what is meant by the "values of x". We have spoken of

them as "cases" or "individuals". It makes a distinct difference whether

the "cases" comprehended by Iix(<px c\l/x) are all the possible cases, all

conceivable individuals, or only all actual cases, all individuals which exist

(in the universe of discourse). Either interpretation may consistently be

chosen, but the consequences of the choice are important. Let us survey

briefly the more significant considerations on this point.

In the first place, supposing that the second choice is made and Uf be

taken to signify "for all z's which exist", what shall we mean by "exist"?

This is entirely a matter of convenience, and logicians are by no means at

one in their use of the term. But any meaning of "exist" which confines

it to temporal and physical reality or to what is sometimes called "the

factual
"

is inconvenient because, for example, we may wish to distinguish
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the status of curves without tangents in mathematics from the status of

the square of the circle. This distinction is usually made by saying that

the former "exist", since the general mathematical idea of a "curve"

admits such cases, and their equations may be given; while the square of

the circle is demonstrably impossible. Again, it is inconvenient to say that

Apollo exists in Greek mythology, whereas the god Agni does not. Now
the god Agni is not inconceivable in Greek mythology; we find no record

of him, that is all. Similarly, while the usual illustrations of mathematical

"non-existence" are impossibilities, there is still a difference between what

"does not exist" in a mathematical system and what is impossible. Sup-

pose we have an "existence postulate" in a set which are consistent and

independent each of the others the 0-postulate in the Boole-Schroder

Algebra, for example. Without this postulate, the remainder of the set

generate a system in which does not exist. But it is possible, as the con-

sistency of this postulate with the others demonstrates. The frequent

statement that "mathematical existence" is the same as "possibility" is a

very thoughtless one.

The most convenient use of "exist" in logic is, then, one which makes

the meaning depend upon the universe of discourse, but one which does

not, as is sometimes supposed, thereby identify the "existent" and the

possible. ("Possible" similarly varies its meaning with the universe of

discourse.) On the Other hand, it is inconvenient to use "exist" so widely

that "existence" is a synonym for "conceivability". This is so obvious

in the most frequent universe of discourse, "phenomena", that it hardly

needs to be pointed out.

Using "exists" in this sense, in which "existence" is narrower than

"possibility" but may, in some universes of discourse, be wider than "the

factual", it makes a difference whether Hx in Ux(<pxcfa) denotes only

existent x's or all possible a;'s. All American silver coins dated 1915 have

milled edges. Let <px be "x is an American silver coin dated 1915", and

let fa be "x has a milled edge". There is no necessity about milled edges

for silver coins, unless one speak in the "legal" universe of discourse. For

this illustration, Hx((f>xcfa) will be true if Hx denote only actual x's;

false if it denote all possible x's. One illustration is as good as a hundred;

if Hx (<px c fa) refer to all possible x's, Ux(<px c fa) means "It is impossible

that <px be true and fa false". If Hx(<f>xcfa) be confined to actual x's,

then it signifies a relation of extension, "The class of things of which ipx

is true is contained in the class of things of which fa is true".
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It might be thought that the meaning of Hx(<px c\l/x) is sufficiently

determined by saying that the "values of x" in a function, <px, are all the

entities for which <px is either true or false. But this is not the case, for

there is question whether, of an x which does not exist, <px is always true,

or always false, or sometimes true and sometimes false, or never either

true or false. Here again, the question is, in part, one of convention.

From the point of view of extension, it is obvious that if <?x can be predi-

cated at all of an x which does not exist, it will always be false. (Predicating

something, <p, of an "individual", x, which does not exist, should be dis-

tinguished from asserting that an empty class, a, which exists though it

has no members, is included in some other, a c 6. "The King of France is

bald" is an example of the former; "All sea serpents have green wings",

of the latter.) And the point of view of extension is frequently that of

common sense. In this sense, "a: is a man" is false of my non-existent twin

brother, and even identical propositions such as "My twin brother is my
twin brother" are false of the non-existent. But from the point of view of

intension, an identical proposition is always true, and <px may be true or

it may be false of a non-existent x. If the point of view of extension be

taken with reference to prepositional functions, then <px is either not-

significant or false of the non-existent, and \f<x is similarly not-significant

or false. If <px and \l/x are not significant of the non-existent, then Iix (<px

c\j/x) means "For every existent x, px materially implies \I/x". If <px

and $x are significant and false of the non-existent, then <px c \f/x is true

of every non-existent x, since of two false propositions, each materially

implies the other. Hence on this interpretation, Hx(<px c\f/x~) is significant

for all possible x's and true in case every existent x is such that <px c \j/x.

Hence its meaning will still be accurately rendered by "For every existent

x, <px materially implies \l/x". If the point of view of intension be taken

with reference to propositional functions, or if it be left open, then H.x (<px

c\f/x) may mean "For every possible x, <px materially implies $x", or we

may, by convention, still confine it to the meaning "For every existent x,

<px materially implies i{/x".
10

10 We would gladly have spared the reader these details, but we dared not. If logicians

do not consider one another's views, who will? In this connection we are reminded of a

passage in Lewis Carroll's Symbolic Logic (pp. 163-64) anent the controversy concerning

the existential import of propositions:

"The writers, and editors, of the Logical text-books which run in the ordinary

grooves to whom I shall hereafter refer by the (I hope inoffensive) title 'The Logi-

cians' take, on this subject, what seems to me to be a more humble position than is

at all necessary. They speak of the Copula of a Proposition 'with bated breath"
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The ground being now somewhat cleared, we return to the simpler

considerations which are really more important. What are the conse-

quences of taking TLx (<px c\l/x) in one or the other meaning? The first

and most important is this. It is a desideratum that we should be able to

derive the calculus of classes from the calculus of prepositional functions.

And in this calculus of classes, the inclusion relation of classes a c @ or

z(<pz) c ztyz) can be defined by

z(if/Z)
= Ux (<f>X C $X)

or by some equivalent definition. If Ux (<px c\f/x) mean "For all x's

which exist, <pxc\f/x", then a c /3, or z(<pz) cz(\f/z), so defined, is the use-

ful relation of extension, "All the existing things which are members of a.

are also members of /3". Such a relation can represent such propositions as

"All American silver coins dated 1915 have milled edges". If, on the other

hand, we interpret Tix (<f>x c\f/x) to mean "For all possible x's, (pxc^f/x,

then two courses are open: (1) we can maintain that whatever is true of

all existent things is true of all possible thus abrogating a useful and

probably indispensable logical distinction; or (2) we can allow that what

is true or false of the possible depends upon its nature as conceived or

defined. If we make the second choice here, the consequence is that

a c 13, or z((pz) c z(\fsz), defined by

z(<f>z) c z($z) = Hx (<px c \f/x)

or in any equivalent fashion, such as

a c j8
= HI (a: e a ex e |8)

is the relation of intension "The class-concept of a implies the class-

concept of /3". This relation does not symbolize such propositions as

almost as if it were a living, conscious Entity, capable of declaring for itself what it

chose to mean and that we, poor human creatures, had nothing to do but to ascertain

what was its sovereign will and pleasure, and submit to it.

"In opposition to this view, I maintain that any writer of a book is fully authorised

in attaching any meaning he likes to any word or phrase he intends to use. If I find

an author saying, at the beginning of his book, 'Let it be understood that by the

word ''black" I shall always mean "white", and that by the word ''white" I shall

always mean ''black",' I meekly accept his ruling, however injudicious I may think it.

"And so, with regard to the question whether a Proposition is or is not to be

understood as asserting the existence of its Subject, I maintain that every writer may
adopt his own rule, provided of course that it is consistent with itself and with the

accepted facts of Logic.

"Let us consider, one by one, the various views that may logically be held, and

thus settle which of them may conveniently be held; after which I shall hold myself
free to declare which of them 7 intend to hold."
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"All American silver coins dated 1915 have milled edges" or "It rained

every week in March", or in general, the frequent universal propositions

which predicate this relation of extension.

And whichever interpretation of Ui (<fOfC\px) be chosen, we can now

point out one interesting peculiarity of it. We quote from Principia

Mathematica: u "In the usual instances of implication, such as "'Socrates

is a man' implies 'Socrates is a mortal'", we have a proposition of the

form
"

<px c \f/x" in a case in which "nx (<px c \f/x)

"
is true. In such a case,

we feel the implication as a particular case of a formal implication ". It

might be added that
" '

Socrates is a man '

implies
'

Socrates is a mortal
' '

is not a formal implication: it is a material implication and a strict impli-

cation, but not formal. One may object: "But as a fact, in such cases

there is a tacit premise of the type 'All men are mortal ', and this is precisely

the formal implication, Ux((px c\f/x)". Granted, of course. But add this

premise, and still the implication is strict and material, but not formal.

"All men are mortal and Socrates is a man" does not formally imply "Soc-

rates is mortal". 12 If the "proper" meaning of "implies" is one in which

"Socrates is a man" really and truly implies "Socrates is mortal", or one

in which "All men are mortal and Socrates is a man" really and truly

implies "Socrates is mortal", then formal implication is not that proper

meaning. However much any formal implication may lie behind and

support such an inference, it cannot state it.

One further consideration is worthy of note: If Tlx ((px c \j/x) be restricted

to o;'s which exist, then it will denote such propositions as "'x is an Ameri-

can silver coin of 1915' implies 'x has a milled edge'"; '"x is a Monday
of last March' implies 'z is a rainy day

'

"; "x has horns and divided hoofs'

implies 'x chews a cud' ". In other words it will denote relations which are

"contingent", and due to "coincidence". It may be doubted whether

such relations are "properly" implications. But upon this question the

reader will very likely find himself in doubt. What we regard as the

reason for this doubt will be pointed out later.

The strict implication, p -J q, means "It is impossible that p be true

11
1, p. 21. We render the symbolism of this passage in our own notation.

12 It may be objected that the calculus gives the formal implication

n^,, ^ { [U,.(<fX c $x) x <pz] c tz}

which is the formal implication of \{/z by Hx (<fixc \f/x) x <pz, which is required. But this is

not what is required. The variables for all values of which this proposition is asserted are

<f and \(/, not x and z. The reader will grasp the point if he specify <p and ^ here, and then

allow them to vary in his illustration.
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and q false", or "p is inconsistent with the denial of q". Similarly <f>x -J \l/x

means "It is impossible that <px be true and \f/x false", or "the assertion

of <px is inconsistent with the denial of \{/x". Some explanation of "im-

possible" or "inconsistent" may seem called for here. These terms can

either of them be explained by the other, but one or the other must be taken

for granted. Yet the following observations may be of assistance: An

assemblage or set of propositions may be such that all of them can be true

at once. They are mutually compatible, compossible, consistent. There

may be more than one such set. Whoever denies this on metaphysical

grounds must assume the burden of proof. And whether, in fact, the

possible and the actual, the consistent and the concurrently true-in-fact

are identical, at least one must admit that our concept of the possible

differs from our concept of the actual: that we mean by "consistent" some-

thing different from "concurrently true-in-fact". Any set of mutually

consistent propositions may be said to define a "possible situation" or

"case" or "state of affairs". And a proposition may be "true" of more

than one such possible situation may belong to more than one such set.

Whoever understands "possible situation" thereby understands "con-

sistent propositions", and vice versa. And whoever understands "im-

possible situation" understands also "inconsistent propositions". In

these terms, we can translate p -i q by "Any situation in which p should be

true and q false is impossible".

But "situation" as here used should not be confused with Boole's

"times- when A is true". A proposition, once true, is always true. A

proposition may be true of some possible "situations" and false of others,

but it must be in point of fact either simply true or simply false. This is

what constitutes the distinction between a proposition and a prepositional

function such as "a; is a man". This last is, in point of fact, neither true

nor false. 13

Of special interest are the cases of strict implication in which more

than two propositions are involved. We have already seen that strict

triadic relations take the form of strict dyads, one member of which is

itself a non-strict or material dyad. WT

here we might expect p -J (q -J r),

wre have instead p -{ (q c r} or p q -i r. Instead of p o (q o r) we have

p o (q r) or (p g) o r. We may now discover the reason for this the reason

13 On the other hand, it is impossible to deny that a proposition may be true of some

"situations", and false of others unless one is prepared to maintain that whatever assertion

can be referred to different possible "circumstances", is not a proposition. And whoever

asserts this must, to be consistent, recognize that there is only one true proposition, the

whole of the truth, the assertion of all-fact, the Hegelian Idee.
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not in mathematical-wise but in terms of common sense about inference.

Suppose that p, q, and the negation of r, form an inconsistent set. They
cannot all be true of any possible situation. We have symbolized this by

-(poqo-r).

(poq o-r) = -[p o (q -r)]
= p 4 -(q -r) = p -t (q c r)

= p q -I r

If p, q, and -r form an inconsistent set and, in point of fact p and q are both

true, then r must be true also. So much is quite clear. The inference

from (p q) to r is strict. But suppose p, q, and -r cannot all be true in

any possible situation and suppose (in the actual situation) p only is known

to be true. We can then conclude that "If q is true, r is true".

-(p o q o -r) = p -J (q c r)

This inference is also strict, but our symbolic equivalents tell us that this

"If . . .
, then . . .

"
is not itself a strict implication; it is qcr, a

material implication. That is the puzzle; why is it not strict like the

other? The answer is simple. If p, q, and -r cannot all be true in any

possible situation and if p is true of the actual situation, it follows that

q and -r are not both true of the actual situation, that is, -(q -r), but it

does not follow that q and -r cannot both be true in some other possible

situation (in which p should be false) it does not follow that q and -r are

inconsistent, that -(qo-r). Consequently it does not follow that q * r,

that q strictly implies r. If, then, we begin with an a priori truth (holding

for all possible situations), that p, q, and -r form an inconsistent set, and

to this add the (empirical) premise "p is true", we get, as a strict con-

sequence, the proposition "If q is true, r is true". But the truth of this

consequence is confined to the actual situation, like the premise p. If, in

this case, we go on and infer r from q, our inference may be said to be valid

because the additional premise, p, required to make it strict, is taken for

granted. The inference depends on p q -J r. Or we may, if we prefer,

describe it as an inference based on material implication, which is valid

because it is confined to the actual situation. Much of our reasoning is

of this type. We state, or have explicitly in mind, only some of the premises

which are required to give the conclusion strictly. We have omitted or

forgotten the others, because they are true and are taken for granted.

In this sense, much of our reasoning may be said to make use of material

or formal implications. This is probably the source of our doubts whether

such propositions as '"x is an American silver coin dated 1915' implies

'x has a milled edge'", and "'x has horns and divided hoofs' implies
l

x



The System of Strict Implication 335

chews a cud'" represent what are "properly" called implications. In

such cases, the reasoning is valid only if the missing premises, which would

render the implication strict, are capable of being supplied.

The case where two premises are strictly required for inference is typi-

cal of all those which require more than one. Where three, p, q, and r,

are required for a conclusion, s, we have

p (q r) -J s = p -J (q r c s)
= p -{ [q c (r c s)]

And similar equations hold where four, five, etc., premises are required

for a conclusion. Only the main implication is strict. In other words, a

strict implication may be complex but is always dyadic.

Another significant property of strict implication, as opposed to material

implication or formal implication, is that if we have
" (

x is a man' strictly

implies 'z is a mortal'", we have likewise "'Socrates is a man' strictly

implies 'Socrates is a mortal'", and vice versa. Propositions strictly imply

each other when and only when any corresponding prepositional functions

similarly imply one another. According to this view of implication,

"'Socrates is a man' implies 'Socrates is a mortal'" is not simply felt to

be the kind of relation upon which most inference depends: it is the rela-

tion upon which all inference does depend. Strict implication is the

symbolic representative of an inference which holds equally well whether

its terms are propositions or prepositional functions.

One further item concerning the properties of strict implication has to

do with the analogues of the "peculiar" propositions of Material Impli-

cation. These analogues are themselves somewhat peculiar:

3-52 ~p -{ (p -4 q) If p is impossible, then p implies any proposition, q.

3-55 p -J (q -J p) If p is necessarily true, then p is implied by any

proposition, q.

These two are the critical members in this class of propositions: the re-

mainder follow from them and are of similar import. In the "proper"

sense of "implies", does an absurd, not-self-consistent proposition imply

anything and everything? A part of the answer is contained in the

observation that "necessary" and "impossible" in every-day use are

commonly hyperbolical and no index. No proposition is "impossible"

in the sense of ~p except such as imply their own contradiction; and no

proposition is "necessary" in the sense of ~ -p unless its negation is self-

contradictory. Again, the implications of an absurd proposition are no

indication of what would be true if that absurd proposition were true.
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It is the nature of an absurd proposition that it is not logically conceivable

that it should be true under any possible circumstances. And, finally,

we can demonstrate that, in the ordinary sense of "implies", an impossible

proposition implies anything and everything. It will be granted that in

the "proper" sense of "implies", (1) "p and q are both true" implies
"
q is

true". And it will be granted that (2) if two premises p and q imply a

conclusion, r, and that conclusion, r, is false, while one of the premises,

say p, is true, then the other premise, q, must be false. That is, if "All

men are liars" and "John Blank is a man" together imply "John Blank

is a liar", but "John Blank is a liar" is false, while "John Blank is a man"
is true, then the other premise, "All men are liars", must be false. And it

will be granted that (3) If the two propositions, p and q, together imply r,

and r implies s, then p and q together imply s. These three principles being

granted, it follows that if q implies r, the impossible proposition "q is true

but r false" implies anything and everything. For by (1) and (3), if q

implies r, then "p and q are both true" implies r. But by (2), if "p and q

are both true" implies r, "q is true but r is false" implies "p is false".

Hence if q implies r, then "q is true but r is false" implies the negation of

any proposition, p. And since p itself may be negative, this impossible

proposition implies anything. "Today is Monday" implies "Tomorrow

is Tuesday". Hence "Today is Monday and the moon is not made of

green cheese
"
implies "Tomorrow is Tuesday". Hence "Today is Monday

but tomorrow is not Tuesday" implies "It is false that the moon is not

made of green cheese", or "The moon is made of green cheese".

This may be taken as an example of the fact that an absurd proposition

implies any proposition. It should be noted that the principles of the

demonstration are quite independent of anything we have assumed about

strict implication, though they accord with our assumptions.

We shall now demonstrate: first, that there are a considerable class of

propositions which imply their own contradiction and are thus impossible,

and a class of propositions which are implied by their own denial and are

thus necessary; and second, that an impossible proposition implies any

proposition, and a necessary proposition is implied by any. These proofs

wr

ill be similarly free from any necessary appeal to symbolism, making use

only of indubitable principles of ordinary logic.

Any proposition which should witness to the falsity of a law of logic,

or of any branch of mathematics, implies its own contradiction and is

absurd, "p implies p" is a law of logic; and may be used as an example.
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In general, any implication, "p implies <?," is shown false by the fact that

"p is true and q is false". Thus the law "p implies p" would be disproved

by the discovery of any proposition p such that "p is true and p is false".

This is, then, an impossible proposition, "p is true and p is false" implies

its own negation, which is "At least one of the two, not-p and p, is true".

For "p is true and p is false" implies "p is true". And "p is true" implies

"At least one of the two, p and q, is true". And not-p,
(

'p is false," may
be this q. Hence "p is true" implies "At least one of the two, p and not-p,

is true". Hence "p is true and p is false" implies "At least one of the two,

p and not-p, is true". The negation of "q is true and r is false" is "At

least one of the two, r and not-g, is true". If p here replace both q and r,

we have as the negation of "p is true and p is false", "At least one of the

two, p and not-p, is true". And it is this which "p is true and p is false"

has been shown to imply.

Merely for purposes of comparison, we resume this proof in the symbols

of Strict Implication:

p -J p, and p -J p = ~(p -p). Hence (p -p) is an impossible proposition.

By the principle p q -J p, we have p-plp. (1)

And by the principle q -{ p + q, we have p -J (-p + p). (2)

By the principle (p * g) (q H r) -J (p -J r), this gives (1) x (2)

p-p* (-p + p)

But (-p + p)
= -(p -p). Hence p -p -i -(p -p).

This is only one illustration of a process which might be carried out in

any number of cases. Take any one of the laws of Strict Implication and

transform it into a form which has the prefix, ~. For example,

p q 4 q p = ~[(p q) -(q p)]

The impossible proposition thus discovered, in the example [(p q) -(q p)],

can always be shown to imply its own negation. The reader will easily see

how this may be done. Such illustrations are quite generally too complex

to be followed through without the aid of symbolic abbreviation, but only

the principles of ordinary logic are necessary for the proofs.

Wherever we find an impossible proposition, wre find a necessary propo-

sition, its negation. For example, "At least one of the two, p and not-p,

is true" is a necessary proposition. We have just demonstrated that it is

implied by its own denial.

(Some logicians have been inclined of late to deny the existence of

23
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necessary propositions and of impossible, or self-contradictory, propositions.

We beg their attention to the above, and request their criticisms.)

We shall now prove that every impossible proposition i. e., every

proposition which implies its own negation implies anything and every-

thing. If p implies not-p, then p implies any proposition, q. We have

already shown that if q implies r, then "q is true and r is false" implies any

proposition. Hence if p implies not-p, "p is true but not-p is false",

that is, "p is true and p is true", implies any proposition, q. But p is

equivalent to "p is true and p is true". Hence if p implies not-p, p implies

any proposition, q.

Any necessary proposition, i. e., any proposition, q, whose denial, not-g,

implies its own negation, is implied by any proposition, r. This follows

from the above by the principle that if p implies q, then
"
q is false

"
implies

"p is false". In the theorem just proved, "If p implies not-p, then p

implies any proposition, q", let p be "not-g", and q be "not-r". We
then have "If not-g implies q, then not-g implies any proposition, not-r".

And if not-g implies not-r, then "not-r is false" implies "not-q is false",

i. e., r implies q. Hence if not-g implies q, then any proposition, r, implies q.

But "a man convinced against his will is of the same opinion still".

In what honest-to-goodness sense are the "necessary" principles of logic

and mathematics implied by any proposition? The answer is: In the

sense of presuppositions. And what, precisely, is that? Any principle, A,

may be said to be presupposed by a proposition, B, if in case A were false,

B must be false. If a necessary principle were false, anything to which

it is at all relevant would be false, because the denial of such a principle,

being an impossible proposition, implies the principle itself. And where a

principle and its negative are both operative in a system, anything which

is proved is liable to disproof. Imagine a system in which there are con-

tradictory principles of proof. That the chaotic results which would ensue

are not, in fact, valid, requires as presuppositions the truth of the necessary

laws of the system. These laws those strictly "necessary" are always

logical in their significance. The logic of "presupposition" is, in fact, a

very pretty affair we have no more than suggested its character here.

The time-honored principles of rationalism are thoroughly sound and

capable of the most rigid demonstration, however much the historic rational-

ists have stretched them to cover what they did not cover, and otherwise

misused them.

In this respect, then, in which the laws of Strict Implication seemed
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possibly not in accord with the
"
proper

"
sense of

"
implies ", we have demon-

strated that they are, in fact, required by obviously sound logical principles,

though in ways which it is easy to overlook.

It may be urged that every demonstration we have given shows not

only that impossible propositions imply anything and necessary proposi-

tions are implied by anything, but also that a false proposition implies,

anything, and a true proposition is implied by anything. The answer is-

that an impossible proposition is false, of course, and a necessary proposition

is true. But if anyone think that this validates the doubtful theorems of

Material Implication, it is incumbent upon him to show that some proposi-

tion that is false but not impossible implies anything and everything, and

that some proposition which is true but not necessary is implied by all propo-

sitions. And this cannot be done.

We shall not further prolong a tedious discussion by any special plea

for the
"
propriety" of strict implication as against material implication

and formal implication. Anyone who has read through so much technical

and uninteresting matter has demonstrated his right and his ability to

draw his* own conclusions.



CHAPTER VI

SYMBOLIC LOGIC, LOGISTIC, AND MATHEMATICAL
METHOD

I. GENERAL CHARACTER OF THE LOGISTIC METHOD. THE "ORTHODOX"

VIEW

The method of any science depends primarily upon two factors, the

medium in which it is expressed and the type of operations by which it

is developed. "Logistic" may be taken to denote any development of

scientific matter which is expressed exclusively in ideographic language and

uses predominantly (in the ideal case, exclusively) the operations of sym-

bolic logic. Though this definition would not explicitly include certain

cases of what would undoubtedly be called "logistic", and we shall wish

later to present an alternative view, it seems best to take this as our point

of departure.

"Modern geometry" differs from Euclid most fundamentally by the

fact that in modern geometry no step of proof requires any principle except

the principles of logic.
1 It was the extra-logical principles of proof in

Euclidean geometry and other branches of mathematics which Kant

noted and attributed to the "pure intuition" of space (and time) as the

source of "synthetic judgments a priori" in science. The character of

space (or of time), as apprehended a priori, carries the proof over places

where the more general principles of logic "analysis" cannot take it.

Certain operations of thought are, thus, accepted as valid in geometry

because geometry is thought about space, and these transformations are

valid for spatial entities, though they might not be valid for other things.

The principal impetus to the modern method in geometry came from the

discovery of non-Euclidean systems which must necessarily proceed, to

some extent, without the aid of such space intuitions, a priori or otherwise.

And the perfection of the modern method is attained when geometry is

entirely freed from dependence upon figures or constructions or any appeal
1 In the opinion of most students, Euclid himself sought to give his proofs the rigorous

character which those of modern geometry have, and the difference of the two systems is

in degree of attainment of this ideal. But Euclid's successors introduced methods which

still further depended upon intuition.

340
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to the perceptual character of space. When geometry is thus freed from

this appeal to intuition or perception, the methods of proof are simply

those which are independent of the nature of the subject matter of the science

that is, the methods of logic, which are valid for any subject matter.2

Coincidently with this alteration of method comes another change

geometry is now abstract. If nothing in the proofs depends upon the fact

that the terms denote certain spatial entities, then, whatever may be meant

by "point", "plane", "triangle", "parallel", etc., if the assumptions be

true, then the theorems will be. Or in any sense in which the assumptions

can be asserted, in that same sense all the consequences of them can be

asserted. The student may carry in his mind any image of "triangle"

or "parallels" which is consistent with the propositions about them. More

than this, even the geometrical relations asserted to hold between "points",

"lines", etc., may be given any denotation which is consistent with the

properties assigned to them. In general, this means for relations, that any*

meaning may be assigned which is consistent with the type of the relation

e. g., transitive or intransitive, symmetrical or unsymmetrical, one-one or

one-many, etc. and with the distributions of such relations in the system.

Essentially the same evolution has taken place in arithmetic, or "alge-

bra ". Any reference to the empirical character of tally marks or collections

of pebbles has become unnecessary and naive. The "
indefinables

"
of

arithmetic are specified, very likely, as "A class, K, of elements, a, b, c,

etc., and a relation (or 'operation') +". Definitions have come to have

the character of what Kant called "transcendental definitions" that is

to say, they comprehend those properties which differentiate the entity, to

be defined by its logical relations, not those which distinguish it for sense

perception. The real numbers, for instance, no longer denote the possible

lengths of a line, but are the class of all the "cuts" that can be made (logi-

2 1 cannot pass over this topic without a word of protest against the widespread notion

that the development of modern geometry demonstrates the falsity of Kant's Transcendental

Aesthetik. It does indeed demonstrate the falsity of Kant's notion that such "synthetic"

principles are indispensable to mathematics. But, in general, it is accurate to say that

Kant's account is concerned with the source of our certainty about the world of nature,

not with the methods of abstract science which did not exist in his day. Nothing is more

obvious than that the abstractness of modern geometry comes about through definitely

renouncing the thing which Kant valued in geometry the certainty of its applicability

to our space. When geometry becomes abstract, the content of the science of space splits

into two distinct subjects: (1) geometry, and (2) the metaphysics of space, which is con-

cerned with the application of geometry. This second subject has been much discussed

since the development of modern geometry, usually in the skeptical or "pragmatic" spirit

(vide Poincare
1

). But it is possible and to me it seems a fact that Kant's basic argu-

ments are, with qualifications, capable of being rehabilitated as arguments concerning the

certainty of our knowledge of the phenomenal world, i. e. as a metaphysics of space.
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cally specified) in a dense, denumerable series, of the type of the series of

rationals.

Thus abstractness and the rigorously deductive method of development

have more and more prevailed in the most careful presentations of mathe-

matics. When these are completely achieved, a mathematical system becomes

nothing more nor less than a complex logical structure.3 Consider any two

mathematical systems which have been given this ideal mathematical form.

They will not be distinguished by the entities which form their "subject

matter", for the terms of neither system have any fixed denotation. And

they will not be distinguished by the operations by means of which they

are developed, for the operations will, in both cases, be simply those of

logical demonstration.

A word of caution upon the meaning of "operation" is here necessary.

It is exactly by the elimination of all peculiarly mathematical operations

that a system comes to have the rigorously deductive form. For the

grocer who represents his putting of one sack of sugar with another sack

by 25 + 25 = 50, [+] is a symbol of operation. For the child who learns

the multiplication table as a means to the manipulation of figures, [X]

represents an operation, but in any rigorously deductive development of

arithmetic, in Dedekind's Was sind und ivas sollen die Zahlen, or Hunting-

ton's "Fundamental Laws of Addition and Multiplication in Elementary

Algebra", [+] and [X] are simply relations. An operation is something

done, performed. The only things performed in an abstract deductive system

are the logical operations variables are not added or multiplied. But,

unfortunately, such relations as [+] and [X] are likely to be still spoken

of as "operations". Hence the caution.

Since abstract mathematical systems do not differ by any fixed meaning

of their terms, and since they are not distinguished through their operations,

they will be different from one another only with respect to the relations

of their terms, and probably also in certain relations of a higher order

relations of relations. And the relations, being likewise abstract, wr
ill

differ, from system to system, only in type and in distribution in the systems;

that is, any two systems will differ only as types of logical order.

3 M. Fieri, writing of "La Ge'omStrie envisaged comme systems purement logique",

says: "Je tiens pour assur6 que cette science, dans ces parties les plus elevens comme
dans les plus modestes, va en s'affirment et en consolidant de plus en plus comme I'etude

d'un certain ordre de relations logiques; en s'affranchissant peu a peu des liens qui 1'attachent

a 1'intuition, et en revetant par suite la forme et les qualit^s d'un science ideale purement
deductive et abstraite, comme VArithmetique". (Bibliotheque du congres Internationale de

Philosophic, in, 368.)
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The connection between abstract or "pure" mathematics and logistic

is, thus, a close one. But the two cannot be simply identified. For the

logical operations by which the mathematical system is generated from its

assumptions may not themselves be expressed in ideographic symbols.

Ordinarily they are not: there are symbols for "four" and "congruent",

"triangle" and "plus", but the operations of proof are expressed by "If

. . . then . . .", "Either . . . or . . .," etc. Only when the logical

operations also are expressed in ideographic symbols do we have logistic.

In other words, all rigorously deductive mathematics gets its principles of

operation from logic; logistic gets its principles of operation from symbolic

logic. Thus logistic, or the logistic development of mathematics, is a name

for abstract mathematics the logical operations of whose development

are represented in the ideographic symbols of symbolic logic.

Certain extensions of symbolic logic, as we have reviewed it, are needed

for the satisfactory expression of these mathematical operations particu-

larly certain further developments of the logic of relations, and the theory

of what are called "descriptions" in Principia Mathematica. But these

necessary additions in no wise affect what has been said of the relation

between symbolic logic and the logistic development of mathematics.

II. Two VARIETIES or LOGISTIC METHOD: PEANO'S Formulaire AND

Principia Mathematica. THE NATURE OF LOGISTIC PROOF

The logistic method is, then, a universal method, applicable to any

sufficiently coordinated body of exact knowledge. And it gives, in mathe-

matics, a most precise and compact development, displaying clearly the

type of logical order which characterizes the system. However, there are

certain variations of the logistic method, and systems so developed may
differ widely from one another in ways which have nothing directly to do

with the type and distribution of relations. One most important difference

has to do with the degree to which the analysis of terms is carried out.

"Number," for example, may be taken simply as a primitive idea, or it

may be defined in terms of more fundamental notions. And these notions

may, in turn, be defined. The length to which such analysis is carried, is

an important item in determining the character of the system. Correl-

atively, relations such as [+] and [X] may be taken as primitive, or they

may be defined. And, finally, the fundamental propositions which generate

the system may be simply assumed as postulates, or they may, by the analy-

sis just mentioned, be derived from those of a more elementary discipline.
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In general, the analysis of "terms" and of relations and the derivation of

fundamental propositions go together. An,d the use of this analytic

method requires, to some extent at least, a hierarchy of subjects, with

symbolic logic as the foundation of the whole.

To illustrate these possible differences between logistic systems, it will

be well to compare two notable developments of mathematics: Formulaire

de Mathematiques* of Peano and his collaborators, and Principia Mathe-

matica of Whitehead and Russell. These two are by no means opposites

in the respects just mentioned. Principia Mathematica represents the

farthest reach of the analytic method, having no postulates and no primitive

ideas save those of the logic, while the Formulaire exhibits a partially hier-

archic, partially independent, relation of various mathematical branches. 5

For example, in the Formulaire, the following primitive ideas are assumed

for arithmetic, which immediately succeeds "mathematical logic".

NO signifies 'number', and is the common name of 0, 1, 2, etc.

signifies 'zero'.

+ signifies 'plus'. If a is a number, a + indicates 'the number suc-

ceeding a'.6

The primitive propositions, or postulates, are as follows: 7

1-0 NoeCls

1-1 OeN<>

1-2 aeNo.3. a + eN

1 3 s e Cls Oes:aes.3 f,.a + es:D.N es

1-4 a, & e NO . a + =b + mO.a = b

l-5aNo3a + -=0
The symbol D here represents ambiguously "implies" or "is contained

in" the relation c of the Boole-Schroder Algebra. This and the idea of

a class, "Cls", and the e-relation, are defined and their properties demon-

strated in the "mathematical logic". In terms of these, the above propo-

sitions may be read:

4 All our references will be to the fifth edition, which is written in the proposed inter-

national language, Interlingua, and entitled Formulario Mathemalico, Editio v (Tomo v de

Formulario complete).
5 The independence of various branches in the Formulaire is somewhat greater than a

superficial examination reveals. Not only are there primitive propositions for arithmetic

and geometry, but many propositions are assumed as "definitions" which define in that

discursive fashion in which postulates define, and which might as well be called postulates.

Observe, for example, the definitions of + and X, to be quoted shortly.
6 Section n, 1, p. 27.
7 Ibid.
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1-0 NO is a class, or 'number' is a common name.

I 1 is a number.

1-2 If a is a number, then the successor of a is a number.

1-3 If s is a class, and if is contained in s, and if, for every a, 'a is

contained in s' implies 'the successor of a is contained in s', then N is

contained in s (every number is a member of the class s}.

(1-3 is the principle of "mathematical induction".)

1-4 If a and b are numbers, and if the successor of a = the successor

of b, then a = b.

1-5 If a is a number, then the successor of a =}= 0.

The numbers are then defined in the obvious way: 1=0+, 2 = 1+,
3 = 2+, etc. 8 The relation +, which differs from the primitive idea, a +,

is then defined by the assumptions:
9

3-laeN .3.a + = a

(If a is a number, then a + =
a.)

3-2 a, 6 e N . 3. a + (b +) =
(a + 6) +

(If a and b are numbers, then a + 'the successor of b' = 'the successor of

a + 6'.)

The relation X is defined by:
10

1-0 a, b, c e No. a. a X =

1-01 a, b, c No . 3 . a X (b + 1)
= (a X 6) + a

It will be clear that, except for the expression of logical relations, such

as f and o
, in ideographic symbols, these postulates and definitions are of

the same general type as any set of postulates for abstract arithmetic.

A class, NO, of members a, b, c, etc., is assumed, and the idea of a +, "suc-

cessor of a". The substantive notions, "number" and "zero", the de-

scriptive function, "successor of," the relations + and X, are not analysed

but are taken as simple notions. 11 However, the properties which numbers

have by ^virtue of being members of a class, N , are not taken for granted, as

would necessarily be done in a non-logistic treatise they are specifically

set forth in propositions of the "mathematical logic" which precedes.

And the other principles by which proof is accomplished are similarly

demonstrated. Of the specific differences of method to which this explicit-

ness of the logic leads, we shall speak shortly.
8 See ibid., p. 29.
9 Ibid.

10 See ibid., 2, p. 32.
II Peano does not suppose them to be unanalyzable. He says (p. 27): "Quaesitione

si nos pote defini No, significa si nos pote scribe aequalitate de forma, No = expressione

composito per signos noto ~ ~ 7 ... -, quod non est facile". (This was written after the

publication of Russell's Principles of Mathematics, but before Principia Mathematical



346 A Survey of Symbolic Logic

In Principia Mathematica, there are no separate assumptions of arith-

metic, except definitions which express equivalences of notation and make

possible the substitution of a single symbol for a complex of symbols.

There are no postulates, except those of the logic, in the whole work. In

other words, all the properties of numbers, of sums, products, powers, etc.,

are here proved to be what they are, solely on account of what number is,

what the relations + and X are, etc. Postulates of arithmetic can be'

dispensed with because the ideas of arithmetic are thoroughly analysed.

The lengths to which such analysis must go in order to derive all the proper-

ties of number solely from definitions is naturally considerable. We should

be quite unable, within reasonable space, to give a satisfactory account of

the entities of arithmetic in this manner. In fact, the latter half of Volume

I and the first half of Volume II of Principia Mathematica may be said to

do nothing but just this. However, we may, as an illustration, follow out

the analysis of the idea of "cardinal number". This will be tedious but,

with patience, it is highly instructive.

We shall first collect the definitions which are involved, beginning with

the definition of cardinal number and proceeding backward to the definition

of the entities in terms of which cardinal number is defined, and then to

the entities in terms of which these are defined, and so on.12

*100-02 NC = D'Nc. Df

"Cardinal number" is the defined equivalent of "the domain of (the rela-

tion) Nc".

*33-01 D = aR[a = x{(3.y} .xRy]. Df

"D "
is the relation of (a class) a to (a relation) R, when a and R are such

that a is (the class) x which has the relation R to (something or other) y.

That is, "D" is the relation of a class of x's, each of which has the relation

R to something or other, to that relation R itself.

*30-01 R'y = (TX)(xRy}. Df

"
R'y" means "the x which has the relation R to y".

Putting together this definition of the use of the symbol
' and the

definition of "D", we see that "D'Nc" is "the x which has the relation

D to Nc", and this is a class a such that every member of a has the rela-

12 The place of any definition quoted, in Principia, is indicated by the reference number.

The "
translations" of these definitions are necessarily ambiguous and sometimes inaccurate,

and, of course, any "translation" must anticipate what here follows but in Principia

precedes.
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tion Nc to something or other. "D'R" is "the domain of the relation R".

If "R" be "precedes", then "D'R" will be "the class of all those things

which precede anything". "Cardinal number", "NC," is defined as

"D'Nc", "the domain of the relation Nc".

We now turn to the meaning of "Nc".

*100-01 Nc = sm. Df

" Nc "
is the relation of the class of referents of

" sm "
to

" sm "
itself. First,

let us see the meaning of the arrow over "sm".

*32-01 R = ay{a = x(xRy)}. Df

"R" is "the relation of a to y, where a and y are such that a is the class

of x's, each of which has the relation R to y". If
" R" be "precedes",

"R" will be the relation of the class "predecessors of y" to y itself.

Now for "sm". We shall best not study its definition but a somewhat

simpler proposition.

*73-l asm/3. = . (3#) .flel -1 -a = D'R. (3
= d'R

"
a sm j8" is equivalent to "For some relation R, R is a one-to-one relation,

while a is the domain of R and /3 is the converse-domain of R".

We have here anticipated the meaning of "d'R" and of "1 > 1".

*33-02 a = $R[p = ${(3.x).xRy}]. Df

"G" is "the relation of (a class) /3 to (a relation) R, when /3 and R are

such that /3 is the class of y's, for each of which (something or other) x has

the relation R to y". Comparing this with the definition of "D" and of

"D'R" above, we see that "Q'R", the converse-domain of R, is the class

of those things to which something or other has the relation R. If
"R"

be "precedes", "Q.'R" will be the class of those things which are preceded

by something or other.

*71-03 1 -1 = R(R"a'Rcl.R"D'Rcl). Df

This involves the meaning of "R", of ", and of "1 ".

*32-02 # = $x{(3 = y(xRy}}. Df

"R" signifies "the relation of /3 to x, when ft and x are such that j8 is the

class of y's to which x has the relation R.

*37-01 R"p = {(30) .yt-p.xRy}. Df

"
R"P" is "the class of x's such that, for some y, y is a member of /3, and x

has the relation R to y. In other words,
"
R"P" (the R's of the /3's) is the
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class of things which have the relation R to some member or other of the

class j8. If "R" be "precedes", "jR"/3" will be the class of predecessors of

all (any) members of 0.

With the help of this last and of preceding definitions, we can now read

*71-03. "1 - 1" is "the class (of relations) R, such that whatever has

the relation R to any member of the class of things-to-which-anything-has-

the-relation-^, is contained in 1; and whatever is such that any member

of the class of those-things-which-have-the-relation-.R-to-anything has the

relation R to it, is contained in 1 .

"
Or more freely and intelligibly :

"
1 1

"

is the class of relations, R, such that if a R ft is true, then a is a class of

one member and /3 is a class of one member: "1 > 1" is the class of all

one-to-one correspondences. Hence
"
a sm /3

"
means

"
There is a one-to-

one correspondence of the members of a with the members of /?. "sm"

is the relation of classes which are (cardinally) similar.

The analysis of the idea of cardinal number has now been carried out

until the undefined symbols, except "1", are all of them logical symbols;

of relations, R; of classes, a, (3, etc.; of individuals, x, y, etc.; of prepo-

sitional functions such as xRy [which is a special case of <p(x, y)}; of
"

<f>x for some x", (3 a:) . <px; the relations c, c, and =; and the idea

(i x)(<px), "the x for which px is true". This last notion occurs in various

special cases, such as D'R, R"p, etc.

"
1
"

is also defined in terms which reduce to these, but the definitions

involved are incapable of precise translation more accurately, ordinary

language is incapable of translating them.

*52-01 1 = a {(3s) . a =
i'x\. Df

*51-01 i = L . Df

*50-01 I=xy(x =
y}. Df 13

"/" is the relation of identity; "i" is the class of those things which have

the relation of identity to something or other; and "
1
"

is the class of such

classes, i. e., the class of all classes having only a single member. Thus the

definition of "1" is given in terms of the idea of individuals, x and y, of

the relation =
, of classes, and the idea involved in the use of the arrow

over I, which has already been analyzed. This definition of 1 is in no

wise circular, however much its translation may suggest that it is; nor is

there any circularity involved in the fact that the definition of cardinal

number requires the previous definition of
"
1 ".

13
Strictly, analysis of =, which differs from the defining relation, [. . .

= ... Df], is

required. But the lack of this does not obscure the analysis, so we omit it here.
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We have now completely accomplished the analysis of the idea of cardinal

number into constituents all of which belong to mathematical logic. The

important significance of this analysis for the method involved we must

postpone for a moment to discuss the definition itself.

If we go back over these definitions, we find that the notion of cardinal

number can now be defined as follows: "Cardinal number" is the class of

all those classes the members of which have a one-to-one correspondence

(with members of some other class). "Cardinal number" is the class of

all the cardinal numbers; and a cardinal number is the class of all those

classes whose members have a one-to-one correlation with the members of a

given class. This is definition "in extension". We most frequently think

of the cardinal number of a class, a, as a property of the class. Definition

in extension determines any such property by logically exhibiting the class

of all those things which have that property. Thus if a be the class com-

posed of Henry, Mary and John, the cardinal number of a will be deter-

mined by logically exhibiting all those classes which have a one-to-one

correlation with the members of a i. e., all the classes with three members.

"3" will, then, be the class of all classes having three members; "4", the

class of all classes of four, etc. And "cardinal number" in general will be

the class of all such classes of classes.

It may be well to observe here also that, by means of ideographic sym-

bols, we can represent exactly, and in brief space, ideas which could not

possibly be grasped or expressed or carried in mind in any other terms.

Perhaps the reader has not grasped those presented: we can assure him it

is not difficult once the symbolism is clear. And if the symbolism appals

by its unfamiliarity, we would call attention to the fact that the number of

different symbols is not greater, nor is their meaning more obscure than

those of the ordinary algebraic signs. It is the persistent accuracy of the

analysis that has troubled him; far be it from us to suggest that we do not

like to think accurately.

So much analysis may appeal to us as unnecessary and burdensome.

But observe the consequences of it for the method. When "cardinal

number" is defined as "D'Nc," all the properties of cardinal number follow

from the properties of "D" and "Nc" and the relation between these

represented by '. And when these in turn are defined in terms of "sm"

and the idea expressed by the arrow, and so on, their properties follow from

the properties of the entities which define them. And finally, when all the

constituents of "cardinal number", and the other ideas of arithmetic
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have been analyzed into ideas which belong to symbolic logic, all the propo-

sitions about cardinal number follow from these definitions. When analysis

of the ideas of arithmetic is complete, all the propositions of arithmetic

follow from the definitions of arithmetic together with the propositions of

logic. Now in Principia Mathematica it is found possible to so analyze all

the ideas of mathematics. Hence the whole of mathematics is proved

from its definitions together with the propositions of logic. And, except

the logic, wo branch of mathematics needs any primitive ideas or postulates of

its own. It is thus demonstrated by this analysis that the only postulates

and primitive ideas necessary for the whole of mathematics are the postu-

lates and primitive ideas of logic.

In the light of this, we can understand Mr. Russell's definition of

mathematics :

14

"Pure Mathematics is the class of all propositions of the form 'p im-

plies q' where p and q are propositions containing one or more variables,

the same in the two propositions, and neither p nor q contains any constants

except logical constants. And logical constants are all notions definable

in terms of the following: Implication, the relation of a term to the class

of which it is a member, the notion of such that, the notion of relation, and

such further notions as may be involved in the general notion of propositions

of the above form."

The content of mathematics, on this view, is the assertion that certain

propositions imply certain others, and these propositions are all expressible

in terms of "logical constants", that is, the primitive ideas of symbolic

logic. These undefined notions, as the reader is already aware, need not

be numerous : ten or a dozen are sufficient. And from definitions in terms,

finally, of these and from the postulates of symbolic logic, the whole of

mathematics is deducible.

The logistic development of a mathematical system may, like the arith-

metic of the Formulaire, assume certain undefined mathematical ideas and

mathematical postulates in terms of these ideas, and thus differ from an

ordinary deductive system of abstract mathematics only by expressing the

logical ideas which occur in its postulates by ideographic symbols and by

using principles of proof supplied by symbolic logic. Or it may, like

arithmetic in Principia Mathematica, assume no undefined ideas beyond

those of logic, define all its mathematical ideas in terms of these, and thus

require no postulates except, again, those of logic. Or it may pursue an

14
Principles of Mathematics, p. 3.
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intermediate course, assuming some of its ideas as primitive but defining

others in terms of a previously developed logic, and thus require some

postulates of its own but still dispense with others which would have been

necessary in a non-logistic treatment.

But whichever of these modes of procedure is adopted, the general

method of proof in logistic will be the same, and will differ from any non-

logistic treatment. A non-logistic development will proceed from postulates

to theorems by immediate inference or the use of syllogism, or enthymeme,
or the reductio ad absurdum, and such general logical methods. Or it may,

upon occasion, make use of methods of reasoning the validity of which

depends upon the subject matter. It may make use of "mathematical

induction", which requires the order of a discrete series with a first term.

Or if proofs of consistency and independence of the postulates are offered,

these will make use of logical principles which are most complex and difficult

of comprehension principles of which no thoroughly satisfactory account

has ever been given. The principles of all this reasoning will not be men-

tioned; it will be supposed that they are understood, though sometimes

they are clear neither to the reader nor to the mathematician who uses

them, and they may even be such that nobody really understands them.

(This is not to say that such proofs are unsound. Proofs by "mathematical

induction
"
were valid before Frege and Peano showed that they are strictly

deductive in all respects. But in mathematics as in other matters, the

assurance or recognition of validity rests upon familiarity and upon prag-

matic sanctions more often than upon consciously formulated principles.)

As contrasted with this, the logistic method requires that every principle

of proof be explicitly given, because these principles are required to state

each step of proof.

The method of proof in logistic is sufficiently illustrated by any extended

proof of Chapter V. Proofs in arithmetic or geometry do not differ in

method from proofs in the logic, and the procedures there illustrated are

universal in logistic. An examination of these proofs will show that postu-

lates and previously established theorems are used as principles of proof

by substituting for the variables p, q, r, etc., in these propositions, other

expressions which can be regarded as values of their variables. The general

principle

(P -* ?) * (-? * -P)

can thus be made to state

(pq + p)-* [-P * -(P q)]
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by substituting p q for p and p for q. Or if /i e NC be substituted for p
and M e D'Nc for q, it states

[(M e NC) H (M e D'Nc)] -i [-(/* e D'Xc) ^ -(/* e NC)]

Thus any special case which comes under a general logical principle is

stated by that principle, when the proper substitutions are made. This is

exactly the manner in which the principles of proof which belong to sym-

bolic logic state the various steps of any particular proof in the logistic

development of arithmetic or geometry.

Returning to our first example, we discover that in

(p q -J p) -1 [-p -J -(p q}]

the first half, p q * p, is itself a true proposition. Suppose this already

proved as, in fact, it is in the last chapter. We can then assert what

p q -J p is stated by the above to imply, that is, .

-p H -(p q)

We thus prove this new theorem by using p q -J p as a premise. To use a

previous proposition as a premise means, in the logistic method, exactly

this: to make such substitutions in a general principle of inference, like

(p -* q) H (-q -p)

that the theorem to be used as a premise appears in the first half of the

expression the part which precedes the main implication sign. That

part of the expression which follows the main implication sign may then

be asserted as a consequence of this premise.

There are two other operations which may be used in the proofs of

logistic the operation of substituting one of a pair of equivalent expressions

for the other, and the operation of combining two previously asserted

propositions into a single assertion. 15 The first of these is exemplified

whenever we make use of a definition. For example, we have, in the system

from which our illustration is borrowed, the definition

p + q
= -(-p -Q)

and the theorem

p = -(-p)

15 The operation of combining two propositions, p and q, into the single assertion,

p q, is not required in systems based on material implication, because we have

p q c.r = p c (q cr)
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If in the definition, we substitute -p for p and -q for q, it states

-p + -q = -[-(-p).-(-g)]

And then, making the substitutions which the theorem p = -(-p) allows,

we have

-p + -q = -(p q)

which may be asserted as a theorem. Again, if we return to the theorem

proved above,
"

-p-i-(pg)

we are allowed, by this last equivalence, to make the substitution in it of

-p + -q for -(p q)' Thus we prove

-p -i-p + -q

This sufficiently illustrates the part played in proof by the substitution of

equivalent expressions.

We may now see exactly what the mechanics of the logistic method is.

The only operations required, or allowable, in proof are the following:

(1) In some postulate or theorem of symbolic logic, other, and usually

more complex, propositions are substituted for the variables p, q, r, etc.,

which represent propositions. The postulate or theorem in which these

substitutions are made is thereby used as a principle of proof which states,

in this particular case, the proposition which results when these substi-

tutions are made.

(2) The postulate or theorem of logic to be used as a principle of proof

may, and in most cases does, state that something implies something else.

In that event, we may make such substitutions as will produce an expression

in which that part which precedes the main implication sign becomes

identical with some postulate or previously proved theorem of logic, of

arithmetic, of geometry, or whatever. That part of the expression which

follows the main implication sign may then be separately asserted as a new

theorem, or lemma, which is thus established. The postulate or previously

proved theorem which is identical with what precedes the main implication

sign, in such a case, is thus used as a premise.

It should here be noted that propositions of logic, of geometry, of any

logistic system, may be used as premises; but only propositions of symbolic

logic, which state implications, are used as general principles of inference.

(3) At any stage of a demonstration, one of a pair of equivalent expres-

sions may be substituted for the other.

24
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(4) If, for example, two premises are required for a certain desired

consequence, and each of these premises has been separately proved, then

the two may be combined in a single assertion.

These are all the operations which are strictly allowable in demonstra-

tions by the logistic method. To their simplicity and definiteness is

attributable a large part of the precision and rigor of the method. Proof

is here not a process in which certain premises retire into somebody's reason-

ing faculty, there to be transformed by the alchemy of thought and emerge

in the form of the conclusion. The whole operation takes place visibly in

the successive lines of work, according to definite rules of the simplest

possible description. The process is as infallible and as mechanical as the

adding machine except in the choice of substitutions to be made, for which,

as the reader may discover by experiment, a certain amount of intelligence

is required, if the results are to be of interest.

III. A "HETERODOX" VIEW OF THE NATURE OF MATHEMATICS AND OF

LOGISTIC

We have now surveyed the general character of logistic and have set

forth what may be called the "orthodox" view of it. As was stated earlier

in the chapter, the account which has now been given is such as would

exclude certain systems which would almost certainly be classified as

logistic in their character. And these excluded systems are most naturally

allied with another view of logistic, which we must now attempt to set

forth. The differences between the "orthodox" and this "heterodox"

view have to do principally with two questions: (1) What is the nature of

the fundamental operations in mathematics; are they essentially of the

nature of logical inference and the like, or are they fundamentally arbitrary

and extra-logical ? (2) Is logistic ideally to be stated so that all its assertions

are metaphysically true, or is its principal business the exhibition of logical

types of order without reference to any interpretation or application?

The two questions are related. - It will appear that the systems which the

previous account of logistic did not cover are such as have been devised

from a somewhat different point of departure. One might characterize

the logistic of Principia Mathematica roughly by saying that the order of

logic is assumed, and the order of the other branches then follows from the

meaning of their terms. On the other hand, the systems which remain to be

discussed might, equally roughly, be characterized by saying that they

attempt to set up a type of logical order, which shall be general and as
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inclusive as possible, and to let the meaning of terms depend upon their

properties of order and relation. Thus this "heterodox" view of logistic

is one which takes it to cover all investigations and developments of types

of logical order which involve none but ideographic symbols and proceed

by operations which may be stated with precision and generality.

In any case, it must be granted that the operations of the logistic method

are themselves pre-logical, in the sense that they underlie the proofs of

logic as well as of other branches. The assumption of these operations

substitution, etc. is the most fundamental of all the assumptions of

logistic. It is possible to view the subject in a way which makes such

pre-logical principles the fundamentally important thing, and does not

regard as essential the use of symbolic logic as a foundation. The pro-

priety of the term logistic for such studies may be questioned. But if

such a different view is consistent and useful, it is of little consequence

what the method ought to be called.

We see at once that, if such a view can be maintained, Mr. Russell's

definition of mathematics, quoted above, is arbitrary, for by that definition

any "logistic" development which is not based upon logic as a foundation

will not be mathematics at all. As a fact, it will be simplest to present this

"heterodox" view of logistic by first presenting and explaining the cor-

relative view of mathematics. If to the reader we seem here to wander

from the subject, we promise to return later and draw the moral.

A mathematical system is any set of strings of recognizable marks in which

some of the strings are taken initially and the remainder derived from these

by operations performed according to rules which are independent of any mean-

ing assigned to the marks. That a system should consist of marks instead

of sounds or odors is immaterial, but it is convenient to discuss mathe-

matics as written. The string-like arrangement is due simply to our habits

of notation. And there is no theoretical reason why a single mark may not,

in some cases, be recognized as a "string".

The distinctive feature of this definition lies in the fact that it regards

mathematics as dealing, not with certain denoted things numbers, tri-

angles, etc. nor with certain symbolized "concepts" or "meanings",

but solely with recognizable marks, and dealing with them in such wise

that it is wholly independent of any question as to what the marks repre-

sent. This might be called the "external view of mathematics" or "mathe-

matics without meaning". It distinguishes mathematics from other sets

of marks by precisely those criteria which the external observer can always
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apply. Whatever the mathematician has in his mind when he develops a

system, what he does is to set down certain marks and proceed to manipulate

them in ways which are capable of the above description.

^ This view is, in many ways, suggested by growing tendencies in mathe-

matics. Systems become "abstract", entities with which they deal "have

no properties save those predicated by postulates and definitions", and

propositions lose their phenomenal reference. It becomes recognized

that any procedure the only ground for which lies in the properties of the

things denoted as "constructions" in geometry is defective and un-

mathematical. Demonstrations must take no advantage of the names

by which the entities are called. But if Mr. Russell is right, the mathe-

matician has given over the metaphysics of space and of the infinite only

to be plunged into the metaphysics of classes and of functions. Questions

of empirical possibility and factual existence are replaced by questions of

"logical" possibility questions about the "existence" of classes, about

the empty or null-class, about the class of all classes, about "individuals",

about
"
descriptions ", about the relation of a class of one to its only member,

about the "values" of variables and the "range of significance" of func-

tions, about material and formal implication, about "types" and "system-

atic ambiguities" and "hierarchies of propositions". And we may be

pardoned for wondering if the last state of that mathematician is not worse

than the first. It is possible to think that these logico-metaphysical

questions are essentially as non-mathematical as the earlier ones about

empirical possibility and phenomenal existence. One may maintain that

nothing is essential in a mathematical system except the type of order.

And the type of order may be viewed as a question solely of the distri-

bution of certain marks and certain complexes of marks in the system.

The question of logical meaning, like the question of empirical denotation,

may be regarded as one of possible applications and not of anything internal

to the system itself.

Before discussing the matter further, it may prove best to give an illus-

tration. Let us choose a single mathematical system and see what we shall

make of it by regarding it simply as a set of strings of marks.

We take initially the following eight strings:

(p*q) = (~p v ?)

(P*q) = ~(~pv~q)

(p
=

q)
= ((p*q) xfoDp))
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We must now state rules according to which other strings can be derived

from the above. In stating these rules, we shall refer to quids and quods:

these words are to have no connotation
; they serve merely for abbreviation

in referring to certain marks.

(1) The marks +, x, D, =
,
and =, are quods.

(2) The marks p, q, r, are quids; and any recognizable mark not appear-

ing in the above may be taken arbitrarily as a quid.

(3) Any expression consisting of two quids, one quod, and the marks

) and (, in the order (quid quod quid), may be treated as a quid.

(4) The combination of any quid preceded immediately by the mark ~

may be treated, as a quid.

(5) Any string in the set may be repeated.

(6) Any quid which is separated only by the mark = from some other

quid, in any string in the set, may be substituted for that other quid any-

where.

(7) In any string in the initial set, or in any string added to the list

according to rule, any quid whatever may be substituted for p or q or r,

or for any quid consisting of only one mark. When a quid is substituted

for any mark in a string, the same quid must also be substituted for that

same mark wherever it appears in the string.

(8) The string resulting from the substitution of a quid consisting of

more than one mark for a quid of one mark, according to (7), may be added

to the list of strings.

(9) In any string added to the list, according to (8), if that portion of

the string which precedes any mark 2 is identical with some other string

in the set, preceded by (, then the portion of that string which follows the

mark D referred to may be separately repeated, with the omission of the

final mark ), and added to the set.

These rules are unnecessarily awkward. In the illustration, it was

important not to refer to "propositions", "relations", "variables", "paren-

theses," etc., lest it should not be clear that the rules are independent of

the meanings of the marks. But though cumbersome, they are still precise.

The original eight strings of marks are, with minor changes of notation,
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definitions and postulates of divisions #1 to *5 in Principia Mathematica.

By following the rules given, anyone may derive all the theorems of these

divisions and all other consequences of these assumptions, without knowing

anything about symbolic logic either before or after. In fact, these

rules formulate exactly what the authors have done in proving the theorems

from the postulates.
16 For this reason, it is unnecessary to carry our illus-

tration further and actually derive other strings of marks from the initial

set. The process may be observed in detail in Principia Mathematica:

it is, in all important respects, the same with the process of proof exhibited

in our Chapter V.

The method of development in Principia Mathematica differs from the

one we have suggested, not in the actual manipulation of the strings of

marks, but most fundamentally in that the reasons why the principles

of their operations are to be found, not in explicitly stated rules, but in

discussions and assumptions concerning the conceptual content of the

system. In fact, the rules of operation are contained in explanations of

the meaning of the notation in discussions of the nature and properties

of "elementary propositions", "elementary prepositional functions", and

so forth. For example, instead of stating that certain substitutions may
be made for p, q, r, etc., they assume as primitive ideas the notions of

"elementary propositions"p, q, r, etc. the notion of "elementary

prepositional functions" <px, \l>z, etc. and the idea of "negation", indi-

cated by writing ~ immediately before the proposition. And in part, the

rules of operation are contained in certain postulates, distinguished by
their non-symbolic form: "If p is an elementary proposition, ~p is an

elementary proposition", "If p and q are elementary propositions, pvq
is an elementary proposition", and "If pp and $p are elementary propo-

sitional functions which take elementary propositions as arguments, <pp v \j/p

is an elementary prepositional function. The warrant for the substitution

of various complexes for p, q, r, etc., is contained in these. The operation

which requires our complicated rule (9), which states precisely what may
be done, is covered by their assumptions: "Anything implied by a true

elementary proposition is true", and "When <px can be asserted, where x

is a real variable, and <px 3 \f/x can be asserted, where a: is a real variable,

then $x can be asserted, where x is a real variable". To make the con-

nection between these and our rule, we must remember that 3 is the

16 With the single and unimportant exception that they do not add every new string

which they arrive at, to the list of strings. Many such are simply asserted as lemmas,
used immediately for one further proof and not listed as theorems.
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symbol for "implies", that if what precedes this sign is identical with

some other string in the set, that means that what precedes is true or is

asserted, and that the number of
'

open
' and

'

close
'

parenthetic marks will

indicate whether the implication in question is the main, or asserted, impli-

cation.

We have chosen this particular system to illustrate the requirements

of "mathematics without meaning" for a special reason, which will appear

shortly. But the same sort of modifications would be sufficient to bring

any good mathematical system into this form; and in most cases such

modifications would be necessary.

If, for example, the system in question were one of the better-known

algebras, we should probably have "a class, K, of elements, a, b, c, etc.",

and such assumptions as
"
If a and b are elements in K, a + b is an element

in K". These would do duty as the principles according to which, for

example, x + y would be substituted for a in any symbolic postulate or

theorem. The changes in such a system would be less radical, hardly

more than alterations in phraseology, but still necessary.

Reliance upon meanings for the validity of the method has obvious

advantages. It is simple and natural and clear. (So is measuring two

line-segments with a foot rule to prove equality.) It also has disadvantages.

Besides the logico-metaphysical questions into which this reliance upon

meanings plunges us, there is the disadvantage that it works a certain

confusion of the form of the system with its content. The clear separation

of these is the ideal set by "mathematics without meaning". Not only

must mathematical procedure be free from all appeal to intuition or to

empirical data; it should also be independent of the meaning of any special

concepts which constitute the subject matter of the system. No alteration

or abridgment of mathematical procedure anywhere should be covered by

the names which are given to the terms. Only those relations or other

properties which determine a system as a particular type of order should

be allowed to make a difference in its manner of development.

To secure complete separation of form from special content, and to

present the system as purely formal and abstract, means precisely to use

principles of operation which are capable of statement as rules for the

manipulation of marks though, in general, the meticulous avoidance of

any reference to "meanings" would be a piece of pedantry. The important

consideration is the fact that the operations of any abstract and really rigorous

mathematical system are capable of formulation without any reference to truth
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or meanings.
1

'

1 We are less interested in any superiority of this "external

view of mathematics", or in the conjectured advantages of such procedure

as has been suggested, than in its bare possibility. If the considerations here

presented are not wholly mistaken, then the ideal of form which requires

17 It is possible to regard such manipulation of marks, the discovery of sufficiently

precise rules and of initial strings which will, together, determine certain results, and the

exhibition of the results which such systems give, as the sole business of the mathematician.

Mathematics, so developed, achieves the utmost economy of assertion. Nothing is

asserted. There are no primitive ideas. Since no meanings are given to the characters,

the strings are neither true nor false. Nothing is assumed to be true, and nothing is asserted

as "proved". It is not even necessary to assert that certain operations upon certain marks

give certain other marks. The initial strings are set down: the requirements of pure
mathematics are satisfied if the others are got and recorded. Yet these initial strings and

the rules of operation determine a definite set of strings of marks determine unambiguously
and absolutely a certain mathematical system.

To many, such a view will seem to exclude from mathematics everything worthy of

the name. These will urge that the modern developments of mathematics have aimed

at exact analysis into fundamental concepts; that this analysis does, as a fact, bring about

such simplification of the essential operations as to make possible mechanical manipulation
of the system without reference to meanings; but that it is absurd to take this shell of

refined symbolism for the meat of mathematics. To any such, it might be replied that

the development of kinematics as an abstract mathematical system does not remove the

physics of matter in motion from the field of experimental investigation; that abstract

geometry still leaves room for all sorts of interesting inquiry about the nature of our space :

that for every system which is freed from empirical denotations there is created the separate

investigation of the possible applications of this system. Correspondingly, for every

system which is made independent of classes, individuals, relations, and so on, there is

created the separate investigation of the metaphysical status of the classes, individuals,

and relations in question of the application of the system of marks to systems of more

special "concepts", i. e. to systems of logical and metaphysical entities. That we are

more interested in the applications of a system than in its rigorous development, more
interested in its "meaning" than in its structure, should not lead to a confusion of meaning
with structure, of applications with method of development.

It may be further objected that this view seems to remove mathematics from the

field of science altogether and make it simply an art; that the computer would, by this

definition, be the ideal mathematician. But there is one feature of mathematics, even as a

system of marks, which is not, and cannot be made, mechanical. Valid results may be

obtamed by mechanical operations, and each single step may be essentially mechanical,

yet the derivation of "required" or "interesting" or "valuable" results will need an in-

telligent and ingenious manipulator. Gulliver found the people of Brobdingnag (?) feed-

ing letters into a machine and waiting for it to turn out a masterpiece. Well, master-

pieces are combinations achieved by placing letters in a certain order! However mechanical

the single operation, it will take a mathematician to produce masterpieces of mathematics.

A machine, or machine-like process, will start from something given, take steps of a deter-

mined nature, and render the result, whatever it is; but it will not choose its point of

departure and select, out of various possibilities, the steps to be taken in order to achieve a

desired result. Is not just this ingenuity in controlling the destination of simple operations
the peculiar skill which mathematics requires? The mathematician, like any other sci-

entific investigator, is largely engaged upon what are, from the point of view of the finished

science, inverse processes: he gets, by trial and error, or intuition, or analogy, what he

presents finally as rigidly necessary. To produce or reveal necessities previously un-

noticed this is the peculiar artistry of his work.
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that mathematics abstract not only from possible empirical meanings but

also from logical or metaphysical meanings is a wholly attainable ideal.

And if this is possible, then Mr. Russell's view that "Pure Mathematics

is the class of all propositions of the form 'p implies q', etc.", is an arbitrary

definition, and the ideal of form which it imposes is not a necessary one,

but must take its chances with other such ideals. The decision among
these will, then, be a matter of choice, dependent upon the advantages to

be gained by one or the other form. There is no a priori reason why

systems which are generated by "mathematical" operations, some of which

may be peculiar to the system and meaningless in logic, are not just as

"sound" and "good" and even "ideal" as systems developed by the com-

pletely analytical method of Principia Mathematica which reduces all

operations to those of logic. And "extra-logical" modes of development

may be just as universal as the "logical", since symbolic logic itself may be

developed by the "extra-logical" method. It was to make this clear that

we chose the particular system which we did for our illustration.

In fact, symbolic logic, or that branch of it which is developed first as a

basis for others, must be developed by operations the validity of which is

presumed apart from the logic so developed. It may, indeed, be the case

that logic is developed by methods which it validates by its own theorems,

when these are proved; it may thus be "self-critical", or "circular" in a

sense which means consistency rather than fallacy. But this is not really

to the point: if the validity of certain operations is presupposed, then that

validity is presupposed, whether it is afterward proved valid or not. There

is, then, a certain advantage in the explicit recognition that a system of

symbolic logic is merely a set of strings of marks, manipulated by certain

arbitrary and "extra-logical" principles. It is, in fact, only on this view

that symbolic logic can be abstract. For symbolic logic, as has already

been pointed out, is peculiar among mathematical systems in that its postu-

lates and theorems are used to state proofs. If, then, the proofs are to be

logically valid, these postulates and theorems must be true, and the system

cannot be abstract. But if the "proofs" are required to be "valid" only

in the sense that certain arbitrary and extra-logical rules for manipulation

have been observed, then it matters no more in logic than in any other

branch whether the propositions be true, or even what they mean. There

is the same possibility of choice here that there is in the case of other mathe-

matical systems the choice which is phrased most sharply as the alterna-

tive between the Russellian view and the "external view of mathematics". 18

18 It may be noted that if mathematics consists of "propositions of the form 'p im-
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If we take this view of mathematics, or any view which regards arbitrary

mathematical operations as equally fundamental with the operations of

logic, we shall then give a different account of logistic and of its relation

to logic. We shall, in that case, regard symbolic logic as one mathematical

system, or type of order, among others. We shall recognize the possibility

of generating all other types of order from the order of logic, but we shall

find no necessity in this proceeding. We may, possibly, find some other

very general type of order from which the order of logic may be derived.

And the question of any hierarchic arrangement of systems will then depend

upon convenience or simplicity or some other pragmatic consideration.

Logistic will, then, be defined not by any relation to symbolic logic but as

the study of types of order as such, or as any development of mathematics

which seeks a high degree of generality and complete independence of

any particular subject matter.

IV. THE LOGISTIC METHOD or KEMPE AND ROYCE

We should not care to insist upon the "external view of mathematics"

and the consequent view of logistic which has been outlined. Other con-

siderations aside, it seems especially dubious to dogmatize about the ideal

of mathematical form when there is no common agreement on the topic

among mathematicians. But we can now answer the questions which

prefaced this discussion: Are the fundamental operations of mathematics

those of logic or are they extra-logical? And is logistic ideally to be so

stated that all its assertions are metaphysically true or is it concerned simply

to exhibit certain general types of order? The answer is that it is entirely a

matter of choice, since either view can consistently be maintained and

mathematics be developed in the light of it.
19 This is especially important

for us, since, as has been mentioned, there are certain studies which would

most naturally be called logistic which would not be covered by the
"
ortho-

plies q', where p and q are propositions containing one or more variables, etc.", and the

theorems about "implies" are required to be true if proofs are to be valid, all mathematics

must be true in order to be valid. On this view,
"
abstractness

" can reside only in the

range of the variables contained in p and q.

19 One case in which the "external view of mathematics" is highly convenient, is of

especial interest to us. There are various symbolic "logics" which differ from one another

both in method and in content. Discussion of the correctness and relative values of these

is almost impossible unless we recognize that the order of logic can be viewed quite apart
from its content that a symbolic logic may be abstract, just like any other branch of

mathematics and thus separate the question of mathematical consistency (of mere ob-

servance of arbitrary and precise principles of operation) from questions of applicability

of a system to valid reasoning. The difficulty of making this separation hampered our

discussion of "implies" in the last chapter.
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dox" view, since they are based, not upon logic, but upon an order prior

to or inclusive of logic. These studies exemplify a method which differs

in notable respects both from that of Peano and that of Principia Mathe-

matica. And it seems highly desirable that we should discuss this alterna-

tive method without initial prejudice.

It is characteristic of this alternative method that it seeks to define

initially a field, or class of entities, and an order in this field, which shall be

mathematically as inclusive as possible, so that more special orders may be

specified by principles of selection amongst the entities. It is distinguished

from the method followed by Peano in the Formulaire by the fact that it

seeks to get special orders, such as that of geometry, without further

"existence postulates", and from the method of Principia Mathematica by
the attempt to substitute selection within an initial order for analysis (defini-

tion by previous ideas) of newly introduced terms. The result is that this

method is particularly adapted to exhibit the analogies of different special

fields the partial identities of various types of order.

The application of this method has not been carried out extensively

enough so that we may feel certain either of its advantages or of its limita-

tions. The method is, in a certain sense, exemplified wherever we have

various mathematical systems all of which satisfy a given set of postulates,

but each or, say, all but one satisfying some one or more of the postulates

"vacuously". For here we have an ordered field within which other and

more limited systems are specified by a sort of selection. ("Selection" is

not the proper word, but no better one has occurred to us.) It is particu-

larly in two studies of the relation of geometry to logic that the method has

been consciously followed: 20 in a paper by A. B. Kempe, "On the Relation

between the Logical Theory of Classes and the Geometrical Theory of

Points,"
21 and in Josiah Royce's study, "The Relation of the Princi-

ples of Logic to the Foundations of Geometry".
22 We shall hardly wish to

go into these studies in detail, but something of the mode of procedure and

general character of the results achieved may be indicated briefly.

Kempe enunciates the principle that "... so far as processes of exact

thought are concerned, the properties of any subject matter depend solely

on the fact that it possesses 'form' i. e., that it consists of a number of

20 Peirce's system of "logical quaternions" (see above, pp. 102-04) also exhibits

something of this method.
21 Proc. London Math. Soc., xxi (1890), 147-82.
22 Trans. Amer. Math. Soc., vi (1905), 353^15.
Some portions of the discussion of this paper and Kempe's are here reprinted from an

article, "Types of Order and the System S,
"

in Phil. Rev. for May, 1916.
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entities, certain individuals, pairs, triads, &c., certain of which are exactly like

each other in all their relations, and certain not; these like and unlike indi-

viduals, pairs, triads, &c., being distributed through the whole system of

entities in a definite way".
23 In illustration of this theory, he seeks to

derive the order both of logical classes and of geometrical sets of points

from assumptions in terms of a triadic relation, a c b, which may be read

"b is 'between' a and c". The type of this relation may be illustrated as

follows : Let a, b, c represent areas
;
then a c b symbolizes the fact that b

includes whatever area is common to a and c, and is itself included in the

area which comprises what is either a or c or common to both. Or it

may be expressed in the Boole-Schroder Algebra as

(a c) c b c (a + c), or a -b c + -a b -c =

The essential properties of serial order may be formulated in terms of this

relation. If ac-b and ad-c, then also ad-b and bd-c. If b is between

a and c and c is between a and d, then also b is between a and d, and c is

between b and d.24

abed

Thus the relation gives the most fundamental property of linear sets.

If a be regarded as the origin with reference to which precedence is deter-

23 "On the Relation between, etc.", loc. cit., p. 147.
24 Assuming ac-b to be expressed in the Boole-Schroder Algebra (as above) by

(a c) c b c (a + c)

this deduction is as follows:

ac-b is equivalent to (a c) c b c (a + c).

ad -c is equivalent to (ad) c c c (a + d).

By the laws of the algebra,

(a c) c b is equivalent to a -b c =0.
b c (a + c) is equivalnt to -(a + c) b = -a b -c = 0.

(a d) c c is equivalent to a -c d =0.
c c (a + d) is equivalent to -(a + d) c = -a c -d = 0.

Combining these premises, i. e. adding the equations, we have

a -b c + -a b -c + a -c d + -a c -d = 0.

Expanding each term of the left-hand member with reference to that one of the

elements, a, b, c, d, not already involved in it,

a -b c d + a -b c -d + -a b -c d + -a b -c -d + a b -c d + a -b -c d

+ -a b c -d + -a -b c -d =

By the law "If a + b =
0, a = 0", we get from this,

(1) a -b d (c + -c) + -a b -d (c + -c) =0 = a -b d + -a b -d,

and (2) b -c d (a + -a) + -b c -d (a + -a) = = b -c d + -b c -d.

(1) is equivalent to (a d) c b c (a + d), or ad-b,
and (2) is equivalent to (6 d) c c c (b + d), or bd-c.
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mined, ac-b will represent "b precedes c", and a d-c that "c precedes d".

Since ac-b and a d-c together give ad-b, we have: if "b precedes c" and

"c precedes d", then "b precedes d". Hence this relation has the essential

transitivity of serial order, with the added precision that it retains reference

to the origin from which "precedes" is determined.

The last-mentioned property of this relation makes possible an inter-

pretation of it for logical classes in which it becomes more general than

the inclusion relation of ordinary syllogistic reasoning. If there should

be inhabitants of Mars whose logical sense coincided with our own so

that any conclusion which we regarded as valid would seem valid to them,

and vice versa but whose psychology was somewhat different from ours,

these Martians might prefer to remark that "b is 'between' a and c",

rather than to note that "All a is b and all b is c". These Martians might

then carry on successfully all their reasoning in terms of this triadic
'

between'

relation. For ac-b, meaning

-a b -c + a -b c =

is a general relation which, in the special case where a is the "null" class

contained in every class, becomes the familiar "b is contained in c" or

"All b is c ". By virtue of the transitivity pointed out above, c - b and d-c

together give d-b, which is the syllogism in Barbara, "If all b is c and all

c is d, then all b is d". Hence these Martians would possess a mode of

reasoning more comprehensive than our own and including our own as a

special case.

The triadic relation of Kempe is, then, a very powerful one, and capable

of representing the most fundamental relations not only in logic but in

all those departments of our systematic thinking where unsymmetrical

transitive (serial) relations are important.
25 In terms of these triads,

Kempe states the properties of his "base system", from whose order the

relations of logic and geometry both are derived. The "base system"

consists of an infinite number of homogeneous elements, each having an

infinite number of equivalents. It is assumed that triads are disposed in

this system according to the following laws :

26

26 It should be pointed out that while capable of expressing such relations, this triadic

relation is itself not necessarily unsymmetrical: ac-b and ab-c may both be true. But in

that case, b =
c, as may be verified by adding the equations for these two triads. Further,

for any a and b, ab-a and ab-b always hold & is always contained in itself. Thus the

triadic relation represents serial order with the qualification that any term "precedes"
itself or is "between" itself and any other an entirely intelligible and even useful con-

vention.
26 See Kempe's paper, loc. tit., pp. 148-49.
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1. If we have a b-p and cb-q, r exists such that we have a q-r and c p-r.

2. If we have a b p and c p-r, q exists such that we have a q r and c b r.
27

3. If we have a b c and a =
b, then c = a = b.

4. If a =
b, then we have a c b and b c a, whatever entity of the system

c may be.

To these, Kempe adds a fifth postulate which he calls "the Law of Con-

tinuity: "No entity is absent from the system which can consistently be

present". From these assumptions and various definitions in terms of

the triadic relation, he is able to derive the laws of the symbolic logic of

classes and fundamental properties of geometrical sets of points. But

further and most important properties of geometrical sets depend upon the

selection of such sets within the "base system" by the law: 28

If we have a-p-q,

b-p-q,

and a-b-p does not hold;

then p =
q.

'a-p-q' here represents a relation of a, p, and q, such that some one at

least of ap-q, aq-p, pq-a will hold. If we call ab-c a "linear triad",

then the set or locus selected by the above law will be such that no two

linear triads of the 'points' comprised in it can have two non-equivalent

'points' in common. Of such a geometric set, Kempe says:
29 "It is

precisely the set of entities which is under consideration by the geometrician

when he is considering the system of points which make up flat space of

unlimited dimensions".

But there are certain dubious features of Kempe 's procedure. As Pro-

fessor Royce notes, the Law of Continuity makes postulates 1 and 2 super-

fluous. And there are other objections to it also. Moreover, in spite of

the fact that Kempe has assumed an infinity of elements in the "base set",

there are certain ambiguities and difficulties about the application of his

principles to infinite collections.

In Professor Royce's paper, we have no such 'blanket assumption' as

the Law of Continuity, and the relations defined may be extended without

difficulty to infinite sets. We have here, in place of the "base system"
and triadic relations, the "system S", the "^-relation" and the "0-rela-

27 If the reader will draw the triangle, a be, and put in the
"
betweens" as indicated,

the geometrical significance of these postulates will be evident. I have changed a little

the order of Kempe's terms so that both 1 and 2 will be illustrated by the same triangle.
28 See Kempe's paper, loc. cit., pp. 176-77.
29

Ibid., p. 177.
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tion". The F-relation is a polyadic relation such that F(ab. . ./xy. . .) is

expressible in the Boole-Schroder Algebra as

a b ... -x -y . . . + -a -b ... . x y . . .
=

This is the generalization of Kempe's a c-b, which is F(ac/b). The 0-rela-

tion is a polyadic symmetrical relation which expresses simultaneously a

whole set of equivalent ^-relations. 0(abc. . .) is expressible as

a b c . . . + -a -b -c . . .
=

We have used the algebra of classes to express these relations, but in

Professor Royce's paper, this order is, of course, reversed. In terms of 0-

relations, the ideas of the logic of classes are defined, and from the postula-

tion of certain 0-relations, the laws of the symbolic logic of classes are de-

rived. And, in most interesting ways which we cannot here discuss, the

order of the system S is also shown to possess all the fundamental proper-

ties of geometric sets of points. The system S has a structure such that it

might be called "the logical continuum", and there are good grounds for

presuming that types of order in the greatest variety may be specified within

the system simply by selection. In the words of Professor Royce:
30

"Wherever a linear series is in question, wherever an origin of coordi-

nates is employed, wherever 'cause and effect', 'ground and consequence/

orientation in space or direction of tendency in time are in question, the

diadic asymmetrical relations involved are essentially the same as the rela-

tion here symbolized by p < y q, [' q is "between" y and p'; or, with y

as origin, 'p precedes q'; or, where y is the null-class, 'p is contained

in q'; or, in terms of propositions, 'p implies q']. This expression, then,

is due to certain of our best established practical instincts and to some of

our best fixed intellectual habits. Yet it is not the only expression for the

relations involved. It is in several respects inferior to the more direct

expression in terms of 0-relations. . . . WT

hen, in fact, we attempt to de-

scribe the relations of the system 2 merely in terms of the antecedent-

consequent relation, we not only limit ourselves to an arbitrary choice of

origin [y in p < q], but miss the power to survey at a glance relations

of more than a diadic, or triadic character."

V. SUMMARY AND CONCLUSION

There are, then, in general, three types of logistic procedure. There is,

first, the "simple logistic method", as we may call it the most obvious

30 "The Relations of the Principles of Logic, etc.," loc. cit., pp. 381-82.
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one, in which the various branches of pure mathematics, taken in the non-

logistic but abstract form, are simply translated into the logistic terms which

symbolize ideographically the relations involved in proof. When this

translation is made, the proofs in arithmetic, or geometry, etc., will be

simply special cases of the propositions of symbolic logic. But other

branches than logic will have their own primitive or undefined ideas and

their own postulates in terms of these. We have used Peano's Formulaire

as an illustration of this method, although the Formulaire has, to an extent,

the characters of the procedure to be mentioned next. Second, there is

the hierarchic method, or the method of complete analysis, exemplified by

Principia Mathematica. Here the calculus of propositions (or implications)

is first developed, because by its postulates and theorems all the proofs of

other branches are to be stated. And, further, all the terms and relations

of other branches are to be so analyzed, i. e., defined, that from their defini-

tion and the propositions of the logic alone, without additional primitive

ideas or postulates, all the properties of these terms will follow. And,

third, there is the method of Kempe and Royce. This method aims to

generate initially an order which is not only general, as is the order of logic,

but inclusive, so that the type of order of various special fields (in as large

number and variety as possible) may be derived simply by selection i. e.,

by postulates wrhich determine the class which exhibits this special order as

a selection of members of the initially ordered field.
31 For this third method,

other types of order will not necessarily be based upon the order of logic:

in the only good examples which we have of the method, logic is itself

derived from a more inclusive order. The sense in which such a procedure

may still be regarded as logistic has been made clear in what precedes.

Which of these methods will, in the end, prove most powerful, no one

can say at present. The whole subject of logistic is too new and un-

developed. But certain characters of each, indicating their adaptability,

or the lack of it, to certain ends, can be pointed out. The hierarchic or

completely analytic method has a certain imposing quality which right-

fully commands attention. One feels that here, for once, we have got to

the bottom of things. Any work in which this method is extensively carried

out, as it is in Principia Mathematica, is certainly monumental. Further,

the method has the advantage of setting forth various branches of the

subject investigated in the order of their logical simplicity. And the step

31 Professor Royce used to say facetiously that the system S had some of the properties

of a junk heap or a New England attic. Almost everything might be found in it: the ques-

tion was, how to get these things out.
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from one such division to another based upon it is always such as to make

clear the connection between the two. The initial analyses definitions

which make such steps possible are, indeed, likely to tax our powers, but

once the initial analysis is correctly performed, the theorems concerning the

derived order will be demonstrable by processes which have already become

familiar and even stereotyped. The great disadvantage of this completely

analytic method is its great complexity and the consequent tediousness of

its application. It is fairly discouraging to realize that the properties of

cardinal number require some four hundred pages of prolegomena in a

symbolism of great compactness for their demonstration. To those whose

interests are simply "mathematical" or "scientific" in the ordinary sense,

it is forbidding.

The simple logistic method offers an obvious short-cut. It preserves

the notable advantages of logistic in general. the brevity and precision

of ideographic symbols, and the consequent assurance of correctness. And

since it differs from the non-logistic treatment in little save the introduction

of the logical symbols, it makes possible the presentation of the subject in

hand in the briefest possible form. When successful, it achieves the acme

of succinctness and clearness. Its shortcoming lies in the fact that, having

attempted little which cannot be accomplished without logistic, it achieves

little more than is attained by the ordinary abstract and deductive presenta-

tion. For what it is, it cannot be improved upon; but those who are inter-

ested in the comparison of types of order, or the precise analysis of mathe-

matical concepts, will ask for something further.

No one knows how far the third method that of Kempe and Royce

can be carried, or whether the system S, or some other very inclusive type

of order, will be found to contain any large number, or all, of the various

special orders in which we are interested. But we can see that, so far as

it works, this method gives a maximum of useful result with a minimum of

complication. It avoids the complexities of the completely analytic method,

yet it is certain to disclose whatever analogies exist between various systems,

by the fact that its terms are allowed to denote ambiguously anything which

has the relations in question, or relations of precisely that type. In another

important respect, also, advantage seems to lie with this method. One

would hardly care to invent a new geometry by the analytical procedure ;

it is difficult enough to present one whose properties are already familiar.

Nor would one be likely to discover the possibility of a new system by

the simple logistic procedure. With either of these two methods, we need

25
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to know where we are going, or we shall go nowhere. By contrast, the

third method is that of the pathfinder. The prospect of the novel is here

much greater. The system 2 may, probably does, contain new continents

of order whose existence we do not even suspect. And some chance trans-

formation may put us, suddenly and unexpectedly, in possession of such

previously unexplored fields. The outstanding difficulty of the method,

apart from our real ignorance of its possibilities, seems to be that it must

rely upon devices which are not at all obvious. It may not tax severely

the analytical powers, but it is certain to tax the ingenuity. Having set

up, for example, the general order of geometrical points, one may be at a

loss how to specify "lines" having the properties of Euclidean parallels.

In this respect, the analytic method is superior. But the prospect of

generality without complexity, wrhich the third method seems to offer, is

most enticing.

We have spoken of symbolic logic, logistic and mathematics. It may
well be questioned whether the method of logistic does not admit of useful

application beyond the field of mathematics. Symbolic logic is an instru-

ment as much more flexible and more powerful than Aristotelian logic as

modern science is more complex than its medieval counterpart. Some of

the advantages which might have accrued to alchemy, had the alchemists

reduced their speculations to syllogisms, might well accrue to modern sci-

ence through the use of symbolic logic. The use of ideographic symbolism

is capable of making quite the same difference in the case of propositions and

reasoning that it has already made in the case of numbers and reckoning.

It is reported that the early Australian settlers could buy sheep from the

Bushmen only by holding up against one sheep the coins or trinkets repre-

senting the price, then driving off that sheep and repeating the process.

It might be reported of the generality of our thinking that it is possible to

get desired conclusions only by holding up one or two propositions, driving

off the immediate consequences, and then repeating the process. Symbolic

logic is capable of working the same transformation in the latter case that

arithmetic does in the former. Those unfamiliar with logistic may not

credit this but upon this point we hesitate to press the analogy. Certain

it is, that for the full benefit that symbolic logic is capable of giving, we

should need to be brought up in it, as we are in the simpler processes of

arithmetic. What the future may bring in the widespread use of this

new instrument, one hardly ventures to prophesy.

Some of the advantages which would he derived from the wider use of
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logistic in science, one can make out. The logistic method is applicable

wherever a body of fact or of theory approaches that completeness and

systematic character which belongs to mathematical systems. And by the

use of it, the same assurance of correctness which belongs to the mathe-

matical portions of scientific subjects may be secured for those portions

which are not stateable in terms of ordinary mathematics.

Dare we make one further suggestion of the possible use of logistic in

science? Since it seems to us important, we shall venture it, with all due

apologies for our ignorance and our presumption. A considerable part

seems to be played in scientific investigation by imagery which is more or

less certainly extraneous to the real body of scientific law. The scientist is

satisfied to accept a certain body of facts directly or indirectly observed

phenomena, "laws," and hypotheses which, for the time being at least,

need not be questioned. But beyond this, he finds a use for what is neither

directly nor indirectly observed, but serves somehow to represent the situ-

ation. A physicist, for example, will indulge in mechanical models of the

ether, or mechanical models of the atom which, however much he may hope

to verify them, he knows to run beyond established fact. The value of

such imagery is, in part at least, its concreteness. The established relations,

simply in terms of mathematics and logic, do not come to possess their full

significance unless they are vested in something more palpable. A great

deal of what passes for "hypothesis" and "theory" seems to have, in part

at least, this character and this value; if it were not for the greater "sug-

gestiveness" of the concrete, much of this would have no reason for being.

Now whoever has worked with the precise and terse formulations of logistic

realizes that it is capable of performing some of the offices of concrete

imagery. Its brevity enables more facts to be "seen" at once, thought of

together, treated as a single thing. And a logistic formulation can be free

from the unwarranted suggestions to which other imagery is liable. Perhaps

a wider use of logistic would help to free science from a considerable body of

"hypotheses" whose value lies not in their logical implications but in their

psychological "suggestiveness". But the reader will take this conjecture

only for what it is worth. What seems certain is that for the presentation

of a systematic body of theory, for the comparison of alternative hypotheses

and theories, and for testing the applicability of theory to observed facts,

logistic is an instrument of such power as to make its eventual use almost

certain.

Merely from the point of view of method, the application of logistic to
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subjects outside the field of mathematics needs no separate discussion.

For when mathematics is no longer viewed as the science of number and

quantity, but as it is viewed by Mr. Russell or by anyone who accepts the

alternative definition offered in this chapter, then the logistic treatment

of any subject becomes mathematics. Mathematics itself ceases to have

any peculiar subject matter, and becomes simply a method. Logistic is

the universal method for presenting exact science in ideographic symbols.

It is the "universal mathematics" of Leibniz.

Finis



APPENDIX
TWO FRAGMENTS FROM LEIBNIZ

(Translated from the Latin of Gehrhardt's text, Die Philosophischen Schiiften von G. W.
Leibniz, Band VII, "Scientia Generalis. Characteristica," XIX and XX.)

These two fragments represent the final form of Leibniz's "universal calculus": their

date is not definitely known, but almost certainly they were written after 1685. Of the

two, XX is in all respects superior, as the reader will see, but XIX also is included because

it contains the operation of "subtraction" which is dropped in XX. Leibniz's compre-
hension of the fact that + and (or, in the more usual notation, "multiplication" and

"division") are not simple inverses in this calculus, and his appreciation of the complexity
thus introduced, is the chief point of interest in XIX. The distinction of "subtraction"

(in intension) and negation, is also worthy of note. It will be observed that, in both

these fragments, A + B (or A B) may be interpreted in two ways: (1) As "both A
and B" in intension; (2) as "either A or B", the class made up of the two classes A and B,
in extension. The "logical" illustrations mostly follow the first interpretation, but in XX
(see esp. scholium to defs. 3, 4, 5, and 6) there are examples of the application to logical

classes in extension. The illustration of the propositions by the relations of line-segments

also exhibits the application to relations of extension. Attention is specifically called to

the parallelism between relations of intension and relations of extension in the remark

appended to prop. 15, in XX. The scholium to axioms 1 and 2, in XX, is of particular in-

terest as an illustration of the way in which Leibniz anticipates later logistic developments.
The Latin of the text is rather careless, and constructions are sometimes obscure.

Gehrhardt notes (p. 232) that the manuscript contains numerous interlineations and is

difficult to read in many places.

XIX

NON INELEGANS SPECIMEN DEMONSTKANDI IN ABSTRACTIS1

Def. 1. Two terms are the same (eadem) if one can be substituted for the other with-

out altering the truth of any statement (salva veritate). If we have A and B, and A enters

into some true proposition, and the substitution of B for A wherever it appears, results in a

new proposition which is likewise true, and if this can be done for every such proposition,

then A and B are said to be the same; and conversely, if A and B are the same, they can

be substituted for one another as I have said. Terms which are the same are also called

coincident (coincidentia) ;
A and A are, of course, said to be the same, but if A and B are

the same, they are called coincident.

Def. 2. Terms which are not the same, that is, terms which cannot always be sub-

stituted for one another, are different (div^rsa). Corollary. Whence also, whatever terms

are not different are the same.

Charact. I.
2 A = B signifies that A and B are the same, or coincident.

Charact. 2. 3 A 4= B, or B 4= A, signifies that A and B are different.

Def. 3. If a plurality of terms taken together coincide with one, then any one of the

plurality is said to be in (inesse) or to be contained in (contineri) that one with which they

1 This title appears in the manuscript, but Leibniz has afterward crossed it out. Al-

though pretentious, it expresses admirably the intention of the fragment, as well as of the
next.

2 We write A = B where the text has A <*> B.
3 We write A 4= B where the text has A non o B.
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coincide, and that one is called the container. And conversely, if any term be contained in

another, then it will be one of a plurality which taken together coincide with that other.

For example, if A and B taken together coincide with L, then A, or B, will be called the

inexislent (inexistens) or the contained; and L will be called the container. However, it

can happen that the container and the contained coincide, as for example, if (A and B) = L,
and A and L coincide, for in that case B will contain nothing which is different from A. . . .*

Scholium. Not every inexistent thing is a part, nor is every container a whole e. g.,

an inscribed square and a diameter are both in a circle, and the square, to be sure, is a certain

part of the circle, but the diameter is not a part of it. We must, then, add something for

the accurate explanation of the concept of whole and part, but this is not the place for it.

And not only can those things which are not parts be contained in, but also they can be

subtracted (or "abstracted", detrahi); e. g., the center can be subtracted from a circle

so that all points except the center shall be in the remainder; for this remainder is the locus

of all points within the circle whose distance from the circumference is less than the radius,

and the difference of this locus from the circle is a point, namely the center. Similarly the

locus of all points which are moved, in a sphere in which two distinct points on a diameter

remain unmoved, is as if you should subtract from the sphere the axis or diameter passing

through the two unmoved points.

On the same supposition [that A and B together coincide with L], A and B taken

together are called constituents (constituentia), and L is called that which is constituted

(constitutum).

Charact. 3. A + B = L signifies that A is in or is contained in L.

Scholium. Although A and B may have something in common, so that the two taken

together are greater than L itself, nevertheless what we have here stated, or now state, will

still hold. It will be well to make this clear by an example: Let L denote the straight

line RX, and A denote a part of it, say the line RS, and B denote

another part, say the line XY. Let either of these parts, RS or R S X
XY, be greater than half the whole line, RX; then certainly it

cannot be said that A + B equals L, or RS + XY equals RX. For inasmuch as YS is a

common part of RS and XY, RS + XY will be equal to RX + SY. And yet it can truly

be said that the lines RS and XY together coincide with the line RS.S

p M N
'R ^ 'Y NS f's \ v- Def. 4. If some term M is in A and also in B, it

is said to be common to them, and they are said to be

communicating (communicantia) .
6 But if they have

s'~~" '' nothing in common, as A and N (the lines RS and
B /' XS, for example), they are said to be non-communi-
"^

eating (incommunicantia).

Def. 5. If A is in L in such wise that there is another term, N, in which belongs

everything in L except what is in A, and of this last nothing belongs in N, then A is said

to be subtracted (delrahi) or taken away (removeri), and N is called the remainder (residuum).

Charact. 4. L A = N signifies that L is the container from which if A be sub-

tracted the remainder is N.

Def. 6. If some one term is supposed to coincide with a plurality of terms which

are added (positis) or subtracted (remolis), then the plurality of terms are called the con-

stituents, and the one term is called the thing constituted. 7

4 Lacuna in the text, followed by "significet A, significabit Nihil".
5 Italics ours.
6 The text here has "communicatia", clearly a misprint.
7 Leibniz's idea seems to be that if A + N = L then L is "constituted" by A and N,

and also if L A = N then L and A "constitute" N. But it may mean that if L A = N,
then A and N "

constitute
"
L.
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Scholium. Thus all terms which are in anything are constituents, but the reverse

does not hold; for example, L A = N, in which case L is not in A.

Def. 7. Constitution (that is, addition or subtraction) is either tacit or expressed,
N or M the tacit constitution of M itself, as A or A in which N is. The expressed
constitution of N is obvious. 8

Def. 8. Compensation is the operation of adding and subtracting the same thing in

the same expression, both the addition and the subtraction being expressed [as A + M
M]. Destruction is the operation of dropping something on account of compensation,

so that it is no longer expressed, and for M M putting Nothing.
Axiom 1. If a term be added to itself, nothing new is constituted or A + A = A.

Scholium. With numbers, to be sure, 2 + 2 makes 4, or two coins added to two
coins make four coins, but in that case the two added are not identical with the former two

;

if they were, nothing new would arise, and it would be as if we should attempt in jest to

make six eggs out of three by first counting 3 eggs, then taking away one and counting
the remaining 2, and then taking away one more and counting the remaining 1.

Axiom 2. If the same thing be added and subtracted, then however it enter into the

constitution of another term, the result coincides with Nothing. Or A (however many
times it is added in constituting any expression) A (however many times it is subtracted

from that same expression) = Nothing.

Scholium. Hence A A or (A + A ) A or A (A + A), ete. = Nothing. For

by axiom 1, the expression in each case reduces to A A.

Postulate 1. Any plurality of terms whatever can be added to constitute a single

term; as for example, if we have A and B, we can write A + B, and call this L.

Post. 2. Any term, A, can be subtracted from that in which it is, namely A + B
or L, if the remainder be given as B, which added to A constitutes the container L that

is, on this supposition [that A + B = L] the remainder L A can be found.

Scholium. In accordance with this postulate, we shall give, later on, a method for

finding the difference between two terms, one of which, A, is contained in the other, 'L,

even though the remainder, which together with A constitutes L, should not be given
that is, a method for finding L A, or A + B A, although A and L only are given,

and B is not.

THEOREM 1

Terms which are the same with a third, are the same with each other.

If A = B and B = C, then A = C. For if in the proposition A = B (true by hyp.)

C be substituted for B (which can be done by def. 1, since, by hyp., B = C), the result

is A = C. Q.E.D.
THEOREM 2

// one of two terms which are the same be different from a third term, then the other of the

two will be different from it also.

If A = B and B =J= C, then A 4= C. For if in the proposition B =f= C (true by hyp.)

A be substituted for B (which can be done by def. 1, since, by hyp., A = B), the result is

A * C. Q.E.D.

[Theorem in the margin of the manuscript.]

Here might be inserted the following theorem: Whatever is in one of two coincident

terms, is in the other also.

If A is in B and B = C, then also A is in C. For in the proposition A is in B (true

by hyp.) let C be substituted for B.

THEOREM 3

// terms which coincide be added to the same term, the results will coincide.

If A = B, then A + C = B + C. For if in the proposition A + C = A + C (true

8 This translation is literal: the meaning is obscure, but see the diagram above.
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per se) you substitute B for A in one place (which can be done by def. 1, since A = B),

it gives A + C = B + C. Q.E.D.
COROLLARY. // terms which coincide be added to terms which coincide, the results will

coincide. If A = B and L = M, then A -f L = B + M . For (by the present theorem)
since L = M, A + L A + M, and in this assertion putting B for A in one place (since

by hyp. A = B) gives A + L = B + M. Q.E.D.

THEOREM 4

A container of the container is a container of the contained', or if that in which some-

thing is, be itself in a third thing, then that which is in it will be in that same third thing

that is, if A is in B and B is in C, then also A is in C.

For A is in B (by hyp.), hence (by def. 3 or charact. 3) there is some term, which we

may call L, such that A + L = B. Similarly, since B is in C (by hyp.), B + M = C,

and in this assertion putting A + L for B (since we show that these coincide) we have

A + L + M = C. But putting N for L + M (by post. 1) we have A + N = C. Hence

(by def. 3) A is in C. Q.E.D.

THEOREM 5

Whatever contains terms individually contains also that which is constituted of them.

If A is in C and B is in C, then A + B (constituted of A and B, def. 4) is in C. For

since A is in C, there will be some term M such that A + M = C (by def. 3). Similarly,

since B is in C, B + N = C. Putting these together (by the corollary to th. 3) ,
we have

A + M + B + N = C + C. But C + C = C (by ax. 1), hence A+M+B + N = C.

And therefore (by def. 3) A + B is in C. Q.E.D. 9

THEOREM 6

Whatever is constituted of terms which are contained, is in that which is constituted of the

containers.

If A is in M and B is in N, then A + B is in M + N. For A is in M (by hyp.) and M
is in M + N (by def. 3), hence A is in M + N (by th. 4). Similarly, B is in N (by hyp.)

and N is in M + N (by def. 3), hence B is in M + N (by th. 4). But if A is in M + N
and B is in M + N, then also (by th. 5) A + B is in M + N. Q.E.D.

THEOREM 7

// any term be added to that in which it is, then nothing new is constituted; or if B is in A,
then A + B = A.

For if B is in A, then [for some C] B + C = A (def. 3). Hence (by th. 3) A + B
= B + C + B = B + C (by ax. 1)

= A (by the above). Q.E.D.

CONVERSE OF THE PRECEDING THEOREM

// by the addition of any term to another nothing new is constituted, then the term added

is in the other.

If A + B = A, then B is in A; for B is in A + B (def. 3), and A + B = A (by hyp.).

Hence B is in A (by the principle which is inserted between ths. 2 and 3). Q.E.D.

THEOREM 8

// terms which coincide be subtracted from terms which coincide, the remainders will

coincide.

If A = L and B = M
,
then A B = L - M. For A - B = A B (true per se),

9 In the margin of the manuscript at this point Leibniz has an untranslatable note,
the sense of which is to remind him that he must insert illustrations of these propositions in

common language.
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and the substitution, on one or the other side, of L for A and M for B, gives A B = L
- M. Q.E.D.

[Note in the margin of the manuscript.] In dealing with concepts, subtraction (de-

tractio) is one thing, negation another. For example, "non-rational man" is absurd or

impossible. But we may say; An ape is a man except that it is not rational. [They
are] men except in those respects in which man differs from the beasts, as in the case of

Grotius's Jumbo10 (Homines nisi qua bestiis differt homo, ut in Jambo Grotii). "Man"
"rational" is something different from "non-rational man". For "man" "rational"

= "brute". But "non-rational man" is impossible. "Man" "animal" "rational"

is Nothing. Thus subtractions can give Nothing or simple non-existence even less than

nothing but negations can give the impossible.
11

THEOREM 9

(1) From an expressed compensation, the destruction of the term compensated follows,

provided nothing be destroyed in the compensation which, being tacitly repeated, enters

into a constitution outside the compensation [that is, + N N appearing in an expression

may be dropped, unless N be tacitly involved in some other term of the expression];

(2) The same holds true if whatever is thus repeated occur both in what is added and

in what is subtracted outside the compensation;

(3) If neither of these two obtain, then the substitution of destruction for compensa-
tion [that is, the dropping of the expression of the form -f- N N] is impossible.

Case 1. If A + N M N = A M, and A, N, and M be non-communicating.
For here there is nothing in the compensation to be destroyed, + N N, which is also

outside it in A or M that is, whatever is added in + N., however many times it is added,

is in + N, and whatever is subtracted in N, however many times it is subtracted, is in

N. Therefore (by ax. 2) for + N N we can put Nothing.
Case 2. If A + B B G = F, and whatever is common both to A + B [i. e.,

to A and B] and to G and B, is M, then F = A G. In the first place, let us suppose
that whatever A and G have in common, if they have anything in common, is E, so that

if they have nothing in common, then E = Nothing. Thus [to exhibit the hypothesis
of the case more fully] A = E + Q + M, B = N + M, and G = E + H + M, so that

F=E + Q + M + N-N-M-H-M, where all the terms E, Q, M, N, and H are

non-communicating. Hence (by the preceding case) F = Q H=E+Q+M E
-H - M = A -G.

Case 3. If A -f- B B D = C, and that which is common to A and B does not

coincide with that which is common to B + D [i. e., to B and D], then we shall not have

C = A - D. FoT\etB=E + F + G, and A = H + E, and D = K + F, so that these

constituents are no longer communicating and there is no need for further resolution.

Then C = H+E + F + G~E-F-G-K-F, that is (by case 1) C = H - K,
which is not = A D (since A D = H + E K F), unless we suppose, contrary

to hypothesis, that E = F that is that B and A have something in common which is also

common to B and D. This same demonstration would hold even if A and D had

something in common.

10
Apparently an allusion to some description of an ape by Grotius.

11 This is not an unnecessary and hair-splitting distinction, but on the contrary, per-

haps the best evidence of Leibniz's accurate comprehension of the logical calculus which

appears in the manuscripts. It has been generally misjudged by the commentators, because
the commentators have not understood the logic of intension. The distinction of the

merely non-existent and the impossible (self-contradictory or absurd) is absolutely essential

to any calculus of relations in intension. And this distinction of subtraction (or in the more
usual notation, division) from negation, is equally necessary. It is by the confusion of

these two that the calculuses of Lambert and Castillon break down.
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THEOREM 10

A subtracted term and the remainder are non-communicating.

If L A = N, 1 affirm that A and 2V have nothing in common. For by the definition

of "subtraction" and of "remainder", everything in L remains in N except that which is

in A, and of this last nothing remains in N.

THEOREM 11

Of that which is in two communicating terms, whatever part is common to both and the

two exclusive parts are three non-communicating terms.

If A and B be communicating terms, and A = P + M and B = N + M,
so that

whatever is in A and B both is in M, and nothing of that is in P or N, then P, M, and N
are non-communicating. For P, as well as N, is non-communicating with M, since what-

ever is in M is in A and B both, and nothing of this description is in P or N. Then P and

N are non-communicating, otherwise what is common to them would penetrate into A
and B both.

PROBLEM

To add non-coincident terms to given coincident terms so that the resulting terms shall

coincide.

If A = A, I affirm that it is possible to find two terms, B and N, such that B =J= N
and yet A + B = A + N.

Solution. Choose some term M which shall be contained in A and such that, N
being chosen arbitrarily, M is not contained in N nor N in M, and let B = M + N. And
this will satisfy the requirements. Because B = M + N (by hyp.) and M and N are

neither of them contained in the other (by hyp.), and yet A + B = A + N, since A + B
= A + M + N and (by th. 7, since, by hyp., M is in A) this is = A + N.

THEOREM 12

Where non-communicating terms only are involved, whatever terms added to coincident

terms give coincident terms will be themselves coincident.

That is, if A + B = C + D and A = C, then B = D, provided that A and B, as

well as C and D, are non-communicating. For A + B C C -{ D C (by th. 8) ;

but A + B - C = A + B - A (by hyp. that A = C), and A + B - A = B (by th. 9,

case 1, since A and B are non-communicating), and (for the same reason) C + D C = D.

Hence B = D. Q.E.D.

THEOREM 13

In general; if other terms added to coincident terms give coincident terms, then the terms

added are communicating.
If A and A coincide or are the same, and A + B = A + N, I affirm that B and N

are communicating. For if A and B are non-communicating, and A and N also, then

B N (by the preceding theorem). Hence B and N are communicating. But if A and B
are communicating, let A P + M and B = Q + M, putting M for that which is common
to A and B and nothing of this description in P or Q. Then (by ax. 1) A + B = P + Q
+ M = P + M + N. But P, Q, and M are non-communicating (by th. 11). Therefore,

if A?" is non-communicating with A that is, with P + M then (by the preceding theorem)

it results from P + Q+M = P + M + N that Q = N. Hence N is in B; hence N and

B are communicating. But if, on the same assumption (namely, that P + Q + M
= P + M + N, or A is communicating with B) N also be communicating with P + M
or A, then either N will be communicating with M, from which it follows that it will be

communicating with B (which contains M) and the theorem will hold, or, N will be com-

municating with P, and in that case we shall in similar fashion let P = G + H and N = F
+ H, so that G, F, and H are non-communicating (according to th. 11), and from P + Q
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+ M = P + M + N we get G + H+Q+M = G + H + M + F + H. Hence (by

the preceding theorem) Q = F. Hence N (
= F + H) and B (

= Q + M) have something

in common. Q.E.D.

Corollary. From this demonstration we learn the following: If any terms be added

to the same or coincident terms, and the results coincide, and if the terms added are each

non-communicating with that to which it is added, then the terms added [to the same or

coincidents] coincide with each other (as appears also from th. 12). But if one of the

terms added be communicating with that to which it is added, and the other not, then [of

these two added terms] the non-communicating one will be contained in the communicating

one. Finally, if each of the terms is communicating with that to which it is added, then at

least they will be communicating with each other (although in another connection it would

not follow that terms which communicate with a third communicate with each other).

To put it in symbols: A + B = A + N. If A and B are non-communicating, and A
and N likewise, then B = N. HA and B are communicating but A and N are non-com-

municating, then A" is in B. And finally, if B communicates with A, and likewise N com-

municates with A, then B and 2V at least communicate with each other.

XX

Def. 1. Terms which can be substituted for one another wherever we please without

altering the truth of any statement (salva veritate), are the same (eadem) or coincident

(coincidentia). For example, "triangle" and "trilateral", for in every proposition demon-

strated by Euclid concerning "triangle", "trilateral" can be substituted without loss of

truth.

A = B12
signifies that A and B are the

same, or as we say of the straight line XY
and the straight line YX, XY = YX, or the

shortest path of a [point] moving from X to

Y coincides with that from Y to X.

Def. 2. Terms which are not the same, that is, terms which cannot always be sub-

stituted for one another, are different (diversa). Such are "circle" and "triangle", or

"square" (supposed perfect, as it always is in Geometry) and "equilateral quadrangle",
for we can predicate this last of a rhombus, of which "square" cannot be predicated.

A =j= B13
signifies that A and B are different, as for example, R__ Y_*?_^

the straight lines XY and RS.

Prop. 1. If A = B, then also B = A. If anything be the same with another, then

that other will be the same with it. For since A = B (by hyp.), it follows (by def. 1) that

in the statement A = B (true by hyp.) B can be substituted for A and A for B; hence we
have B = A.

Prop. 2. If A =f= B, then also B ^ A. If any term be different from another, then that

other will be different from it. Otherwise we should have B A, and in consequence (by

the preceding prop.) A = B, which is contrary to hypothesis.

Prop. 3. If A = B and B = C, then A = C. Terms which coincide with a third term

coincide with each other. For if in the statement A = B (true by hyp.) C be substituted

for B (by def. 1, since A = B), the resulting proposition will be true.

Coroll. HA=B and B = C and C = D, then A = D; and so on. For A = B = C,

hence A = C (by the above prop.). Again, A = C = D; hence (by the above prop.)

A = D.

Thus since equal things are the same in magnitude, the consequence is that things

equal to a third are equal to each other. The Euclidean construction of an equilateral

triangle makes each side equal to the base, whence it results that they are equal to each

12 A = B for A oo B, as before.
13 A 4= B for A non oo B, as before.
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other. If anything be moved in a circle, it is sufficient to show that the paths of any two
successive periods, or returns to the same point, coincide, from which it is concluded that

the paths of any two periods whatever coincide.

Prop. 4. If A = B and B =J= C, then A ^ C. If of two things which are the same with

each other, one differ from a third, then the other also will differ from that third. For if in the

proposition B 4= C (true by hyp.) A be substituted for B, we have (by def. 1, since A = B)
the true proposition A 4= C.

Def. 3. A is in L, or L contains A, is the same as to say that L can be made to coin-

cide with a plurality of terms, taken together, of which A is one.

Def. 4. Moreover, all those terms such that whatever is in them is in L, are together

called components (componentia) with respect to the L thus composed or constituted.

B N = L signifies that B is in L; and that B and N together compose or constitute

L. 14 The same thing holds for a larger number of terms.

Def. 5. I call terms one of which is in the other subalternates (suballernantia), as A
and B if either A is in B or B is in A.

Def. 6. Terms neither of which is in the other [I call] disparate (disparata).

Axiom 1. B N = N B, or transposition here alters nothing.

Post. 2. Any plurality of terms, as A and B, can be added to compose a single term,
A B or L.

Axiom 2. A A = A. If nothing new be added, then nothing new results, or

repetition here alters nothing. (For 4 coins and 4 other coins are 8 coins, but not 4 coins

and the same 4 coins already counted).

Prop. 5. If A is in B and A = C, then C is in B. That which coincides with the in-

existent, is inexistent. For in the proposition, A is in B (true by hyp.), the substitution

of C for A (by def. 1 of coincident terms, since, by hyp., A = C) gives, C is in B.

Prop. 6. // C is in B and A = B, then C is in A. Whatever is in one of two coincident

terms, is in the other also. For in the proposition, C is in B, the substitution of A for C
(since A = C) gives, A is in B. (This is the converse of the preceding.)

Prop. 7. A is in A. Any term whatever is contained in itself. For A is in A A
(by def. of "inexistent", that is, by def. 3) and A A = A (by ax. 2). Therefore (by

prop. 6), A is in A.

Prop. 8. If A = B, then A is in B. Of terms which coincide, the one is in the other.

This is obvious from the preceding. For (by the preceding) A is in A that is (by hyp.),

in B.

Prop. 9. If A = B, then A ffi C = B C. If terms which coincide be added to the

same term, the results will coincide. For if in the proposition, A C = A C (true

per se), for A in one place be substituted B which coincides with it (by def. 1), we have

A C = B C.

A_C

/ ,_A_^ \ A. "triangle" "I

/,''' "^>-
N C \ /"coincide

// \ ,'' N\ B "trilateral" }

i*
A & /^ t{ a/tTiiloi-iai-ol -f T-ionrrl^i "

'}'

^^ ^' A C" equilateral triangle"
\ x^ -'' C '' 5 C "equilateral trilateral" /-coincide""

V T> S

"^ /'

~B~9~C

14 In this fragment, as distinguished from XIX, the logical or "real" sum is repre-
sented by . Leibniz has carelessly omitted the circle in many places, but we write
wherever this relation is intended.
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Scholium. This proposition cannot be converted much less, the two which follow.

A method for finding an illustration of this fact will be exhibited below, in the problem which

is prop. 23.

Prop. 10. // A = L and B = M, then A B = L M . If terms which coincide

be added to terms which coincide, the results will coincide. For since B = M, A B = A M
(by the preceding), and putting L for the second A (since, by hyp., A = L) we have A B
= L M.

A "triangle", and L "trilateral" coin- /

cide. B ""regular" coincides with M "most
J/

capacious of equally-many-sided figures with R{
equal perimeters".

"
Regular triangle

"
coin- Vs

cides with "most capacious of trilateral mak-

ing equal peripheries out of three sides".

Scholium. This proposition cannot be converted, for if A B = L M and A = L,

still it does not follow that B = M, and much less can the following be converted.

Prop. 11. // A = L and B = M and C = N, then ABC=LMN.
And so on. // there be any number of terms under consideration, and an equal number of

them coincide with an equal number of others, term for term, then that which is composed of the

former coincides with that which is composed of the latter. For (by the preceding, since

A = L and B = M) we have A B L M. Hence, since C = N, we have (again

by the preceding) A@B@C =LMN.
Prop. 12. // B is in L, then A B will be in A L. If the same term be added to

what is contained and to what contains it, the former result is contained in the latter. For

L = B N (by def. of "inexistent"), and A B is in B N A (by the same), that

is, A B is in L A.

B "equilateral", L "regular", A "quad-
//'

v
\ \ rilateral". "Equilateral" is in or is attribute

v \ \ of "regular". Hence "equilateral quadrilat-

(^ Y_r-
_V^ W-' eral" is in "regular quadrilateral" or "perfect

\ \N / / / square". YS is in RX. Hence RT YS,
Vx
--__JSXl ^'' / or RS, is in RT RX, or in RX.
A X~# ^''

"~r"
Scholium. This proposition cannot be converted; for if A B is in A L, it does

not follow that B is in L.

Prop. 13. // L B = L, then B is in L. If the addition of any term to another does

not alter that other, then the term added is in the other. For B is in L B (by def. of "in-

existent") and L B = L (by hyp.), hence (by prop. 6) B is in L.

RY RX = RX. Hence RY is in RX. R !_T_^

RY is in RX. Hence RY RX = RX. \T ' !

B~L
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Let L be "parallelogram" (every side of which is parallel to some side),
15 B be "quadri-

lateral".

"Quadrilateral parallelogram" is in the same as "parallelogram".

Therefore to be quadrilateral is in [the intension of] "parallelogram".

Reversing the reasoning, to be quadrilateral is in "parallelogram".

Therefore, "quadrilateral parallelogram" is the same as "parallelogram".

Prop. 14. If B is in L, then L B = L. Subalternates compose nothing new; or if

any term which is in another be added to it, it will produce nothing different from that other.

(Converse of the preceding.) If B is in L, then (by def. of "inexistent") L = B P. Hence

(by prop. 9)L@B=BPB, which (by ax. 2) is = B P, which (by hyp.) is = L.

Prop. 15. If A is in B and B is in C, then also A is in C. What is contained in the

contained, is contained in the container. For A is in B (by hyp.), hence A L = B (by

def. of "inexistent"). Similarly, since B is in C, B M = C, and putting A L for B
in this statement (since we have shown that these coincide), we have A L M = C.

Therefore (by def. of "inexistent") A is in C.

R T S X RT is in RS, and RS in RX.

V "A / ~~7 Hence RT is in RX.

/ A "quadrilateral", B "parallelogram",

yc C "rectangle".

To be quadrilateral is in [the intension of] "parallelogram", and to be parallelogram
is in "rectangle" (that is, a figure every angle of which is a right angle). If instead of

concepts per se, we consider individual things comprehended by the concept, and put A
for "rectangle", B for "parallelogram", C for "quadrilateral", the relations of these can

be inverted. For all rectangles are comprehended in the number of the parallelograms,
and all parallelograms in the number of the quadrilaterals. Hence also, all rectangles are

contained amongst (in) the quadrilaterals. In the same way, all men are contained amongst
(in) all the animals, and all animals amongst all the material substances, hence all men
are contained amongst the material substances. And conversely, the concept of material

substance is in the concept of animal, and the concept of animal is in the concept of man.

For to be man contains [or implies] being animal.

Scholium. This proposition cannot be converted, and much less can the following.

Coroll. If A N is in B, N also is in B. For N is in A N (by def. of
"
inexistent ").

Prop. 16. // A is in B and B is in C and C is in D, then also A is in D. And so on.

That which is contained in what is contained by the contained, is in the container. For if A
is in B and B is in C, A also is in C (by the preceding). Whence if C is in D, then also

(again by the preceding) A is in D.

Prop. 17. // A is in B and B is in A, then A = B. Terms which contain each other

coincide. For if A is in B, then A N = B (by def. of "inexistent"). But B is in A
(by hyp.), hence A N is in A (by prop. 5). Hence (by coroll. prop. 15) N also is in A.

Hence (by prop. 14) A = A N, that is, A = B.

B_

RT, N; RS, A; SR RT, B. ,''' ^^
To be trilateral is in [the intension of] //'' \

"triangle", and to be triangle is in "trilat-

eral". Hence "triangle" and "trilateral"

coincide. Similarly, to be omniscient is to be \
" "

/
omnipotent. \x ,''

15 Leibniz uses "parallelogram" in its current meaning, though his language^may
suggest a wider use.
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Prop. 18. // A is in L and B is in L, then also A B is in L. What is composed of

two, each contained in a third, is itself contained in that third. For since A is in L (by hyp.),

it can be seen that A M = L (by def. of "inexistent"). Similarly, since B is in L,
it can be seen that B N = L. Putting these together, we have (by prop. 10) A MBN = LL. Hence (by ax. 2)

18 AM@BN = L, Hence (by def. of
16 The number of the axiom is given in the text as 5, a misprint,

"inexistent") A B is in L.

RYS is in RX. / \
YSTisinRX. Bfr f
Hence BT is in BX. *\ \ / J

A "equiangular", B "equilateral", A B "equiangular equilateral" or "regular",
L "square". "Equiangular" is in [the intension of] "square", and "equilateral" is in

"square". Hence "regular" is in "square".

Prop. 19. // A is in L and B is in L and C is in L, then A B C is in L. And
so on. Or in general, whatever contains terms individually, contains also what is composed of

them. For A B is in L (by the preceding). But also C is in L (by hyp.), hence (once

more by the preceding) A B C is in L.

Scholium. It is obvious that these two propositions and similar ones can be con-

verted. For if A B = L, it is clear from the definition of "inexistent" that A is in L,

and B is in L. Likewise, if A B C = L, it is clear that A is in L, and B is in L, and

C is in L. 17 Also that A B is in L, and A C is in L, and B C is in L. And so on.

Prop. 20. // A is in M and B is in N, then A B is in M N. If the former of one

pair be in the latter and the former of another pair be in the latter, then what is composed of the

former in the two cases is in what is composed of the latter in the two cases. For A is in M (by

hyp.) and M is in M N (by def. of "inexistent"). Hence (by prop. 15) A is in M N
Similarly, since B is in N and N is in M N, then also (by prop. 18) A B is in M N'

RT is in RY and ST is in SX, hence RT

,''" ^^^^ ST, or RY, is in RY SX, or in RX. 18

^'"^"X^'^N If A be "quadrilateral" and B "equi-

fr / \ N
>^ angular", A 5 will be "rectangle". If M

f I
\ ^ be "parallelogram" and N "regular", M

;--^-f-J
-IT N will be "square". Now "quadrilateral"

V \ /' /I
ib in [the intension of] "parallelogram", and

v

\^^-ii--^--_B.-''/ "equiangular" is in "regular", hence "rec-
NX
X^ ^' tangle" (or "equiangular quadrilateral") is

m "regular parallelogram or square".

Scholium. This proposition cannot be converted. Suppose that A is in M and

A B is in M N, still it does not follow that B is in N; for it might happen that B as

well as A is in M, and whatever is in B is in M, and something different in N. Much less,

therefore, can the following similar proposition be converted.

Prop. 21. IfAisinMandBisinNandCisinP,thenA B CisinM N @ P.

17 To be consistent, Leibniz should have written "A B is in L" instead of "A 5
= L", and "A 5 C is in L" instead of "A

.
C = L" but note the method

of the proof. to
18 The text has RY here instead of BX: the correction is obvious.
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And so on. Whatever is composed of terms which are contained, is in what is composed of the

containers. For since A is in M and B is in N, (by the preceding), A B is in M N.

But C is in P, hence (again by the preceding) ABC'is'v\MN@P.
Prop. 22. Two disparate terms, A and B, being given, to find a third term, C, different

from them and such that with them it composes subalternates A C and B C that is,

such that although A and B are neither of them contained in the other, still A @ C and

B C shall one of them be contained in the other.

Solution. If we wish that A C be contained in B C, but A be not contained in B,

this can be accomplished in the following manner: Assume (by post. 1) some term, D,
such that it is not contained in A, and (by post. 2) let A D = C, and the requirements
are satisfied.

- ..

/,'' A C "-s
x \ For A C = A A D (by construc-

f \ \ tion) = A D (by ax. 2). Similarly, B C
I_S_Vr_\j

- B A D (by construction). But A
\~ /\ ,/\ f D is in 5 A D (by def. 3). Hence
^-*' X

"-j'/'

/ N

*"~R"' A CisinB C. Which was to be done. 19

L>

SY and YX are disparate. If RS SY = YR, then SY YR will be in ZF Ffl.

Let A be "equilateral", B "parallelogram", D "equiangular", and C "equiangular

equilateral" or "regular", where it is obvious that although "equilateral" and "parallelo-

gram" are disparate, so that neither is in the other, yet "regular equilateral" is in "regular

parallelogram
"
or "square ". But, you ask, will this construction prescribed in the problem

succeed in all cases? For example, let A be "trilateral", and B "quadrilateral"; is it

not then impossible to find a concept which shall contain A and B both, and hence to

find B C such that it shall contain A C, since A and B are incompatible? I reply

that our general construction depends upon the second postulate, in which is contained

the assumption that any term and any other term can be put together as components.
Thus God, soul, body, point, and heat compose an aggregate of these five things. And in

this fashion also quadrilateral and trilateral can be put together as components. For

assume D to be anything you please which is not contained in "trilateral", as "circle".

Then A D is "trilateral and circle",
20 which may be called C. But C A is nothing

but "trilateral and circle" again. Consequently, whatever is in C B is also in "tri-

lateral", in "circle", and in "quadrilateral". But if anyone wish to apply this general

calculus of compositions of whatever sort to a special mode of composition; for example
if one wish to unite "trilateral" and "circle" and "quadrilateral" not only to compose
an aggregate but so that each of these concepts shall belong to the same subject, then it is

necessary to observe whether they are compatible. Thus immovable straight lines at a

distance from one another can be added to compose an aggregate but not to compose a

continuum.

Prop. 23. Two disparate terms, A and B, being given, to find a third, C, different from
them [and such that A B = A C].

21

Solution. Assume (by post. 2) C = A B, and this satisfies the requirements.

For since A and B are disparate (by hyp.) that is (by def. 6), neither is in the other

19 Leibniz has carelessly substituted L in the proof where he has D in the proposition
and in the figure. We read D throughout.

20 Leibniz is still sticking to intensions in this example, however much the language
may suggest extension.

21 The proof, as well as the reference in the scholium to prop. 9, indicate that the

statement of the theorem in the text is incomplete. We have chosen the most conservative

emendation.
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therefore (by prop. 13) it is impossible that C = A or C = B. Hence these three are differ-

ent, as the problem requires. ThusAC=AAB (by construction), which (by

ax. 2) is = A B. Therefore A C = A B. Which was to be done.

Prop. 24. To find a set of terms, of any desired number, which differ each from each and

are so related that from them nothing can be composed which is new, or different from every

one of them [i. e., such that they form a group with respect to the operation ].

Solution. Assume (by post. 1) any terms, of any desired number, which shall be

different from each other, A, B, C, and D, and from these let A B = M, M C = N,
and N D P. Then A, B, M, N, and P are the terms required. For (by construction)

M is made from A and B, and hence A, or B, is in M, and M in N, and N in P. Hence

(by prop. 16) any term which here precedes is in any which follows. But if two such are

united as components, nothing new arises; for if a term be united with itself, nothing new

arises; L L = L (by ax. 2).
22 If one term be united with another as components, a

term which precedes will be united with one which follows; hence a term which is contained

with one which contains it, as L N, but L N = N (by prop. 14) ,
23 And if three are

united, as L N P, then a couple, L N, will be joined with one, P. But the couple,

L N, by themselves will not compose anything new, but one of themselves, namely the

latter, N, as we have shown; hence to unite a couple, L N, with one, P, is the same as

to unite one, N, with one, P, which we have just demonstrated to compose nothing new.

And so on, for any larger number of terms. Q.E.D.
Scholium. It would have been sufficient to add each term to the next, which contains

it, as M, N, P, etc., and indeed this will be the situation, if in our construction we put
A = Nothing and let B = M . But it is clear that the solution which has been given is of

somewhat wider application, and of course these problems can be solved in more than one

way; but to exhibit all their possible solutions would be to demonstrate that no other

ways are possible, and for this a large number of propositions would need to be proved
first. But to give an example: five things, A, B, C, D, and E, can be so related that they
will not compose anything new only in some one of the following ways: first, if A is in B
and B in C and C in D and D in E; second, if A B = C and C is in D and D in E; third,

if A B = C and A is in D and B D = E. The five concepts which follow are related

in the last, or third, way; A "equiangular", B "equilateral", C "regular", D "rectangle",

E "square", from which nothing can be composed which does not coincide with them, since

"equiangular equilateral" coincides with "regular", and "equiangular" is in [the intension

of] "rectangle", and "equilateral rectangle" coincides with "square". Thus "regular

equiangular" figure is the same as that which is at once "regular" and "regular equi-

lateral", and "
equiangular rectangle

"
is "rectangle", and "

regular rectangle
"

is "square".
Scholium to defs. 3, 4, 5, and 6. We say that the concept of the genus is in the concept

of the spe :ies; the individuals of the species amongst (in) the individuals of the genus; a

part in the whole; and indeed the ultimate and indivisible in the continuous, as a point
is in a line, although a point is not a part of the line. Likewise the concept of the attribute

or predicate is in the concept of the subject. And in general this conception is of the

widest application. We also speak of that which is in something as contained in that in

which it is. We are not here concerned with the notion of "contained" in general with

the manner in which those things which are "in" are related to one another and to that

which contains them. Thus our demonstrations cover also those things which compose

something in the distributive sense, as all the species together compose the genus. Hence
all the inexistent things which suffice to constitute a container, or in which are all things

which are in the container, are said to compose that container; as for example, A B are

said to compose L, if A, B, and L denote the straight lines RS, YX, and RX, for RS YX
= RX. And such parts which complete the whole, I am accustomed to call "cointe-

grants", especially if they have no common part; if they have a common part, they are

22 The number of the axiom is omitted in the text.
23 The number of the prop, is omitted in the text.

26
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called "co-members", as RS and RX. Whence it is clear that the same thing can be

composed in many different ways if the things of which it is composed are themselves

composite. Indeed if the resolution could finally be carried to infinity, the variations of

composition would be infinite. Thus all synthesis and analysis depends upon the principles

here laid down. And if those things which are contained are homogeneous with that in

which they are contained, they are called parts and the container is called the whole. If

two parts, however chosen, are such that a third can be found having a part of one and a

part of the other in common, then that which is composed of them is continuous. Which
illustrates by what small and simple additions one concept arises from another. And I

call by the name "subalternates" those things one of which is in the other, as the species
in the genus, the straight line RS in the straight line RX; "disparates" where the opposite
is the case, as the straight lines RS and YX, two species of the same genus, perfect metal

and imperfect metal and particularly, members of the different divisions of the same

whole, which (members) have something in common, as for example, if you divide "metal"
into "perfect" and "imperfect", and again into "soluble in aquafortis" and "insoluble",
it is clear that "metal which is insoluble in aqua fortis" and "perfect metal" are two dispa-

rate things, and there is metal which is perfect, or is always capable of being fulminated in

a cupel,
24 and yet is soluble in aquafortis, as silver, and on the other hand, there is imperfect

metal which is insoluble in aqua fortis, as tin.

Scholium to axioms 1 and 2. Since the ideal form of the general [or ideal form in

general, speciosa generalis] is nothing but the representation of combinations by means of

symbols, and their manipulation, and the discoverable laws of combination are various,
25

it results from this that various modes of computation arise. In this place, however, we
have nothing to do with the theory of the variations which consist simply in changes of

order [i. e., the theory of permutations], and AB [more consistently, A B] is for us the

same as BA [or B A], And also we here take no account of repetition that is AA [more

consistently, A A] is for us the same as A. Thus wherever these laws just mentioned

can be used, the present calculus can be applied. It is obvious that it can also be used

in the composition of absolute concepts, where neither laws of order nor of repetition obtain;

thus to say "warm and light" is the same as to say "light and warm", and to say "warm
fire" or "white mi k", after the fashion of the poets, is pleonasm; white milk is nothing
different from milk, and rational man that is, rational animal which is rational is nothing
different from rational animal. The same thing is true when certain given things are said

to be contained in (inexistere) certain things. For the real addition of the same is a useless

repetition. When two and two are said to make four, the latter two must be different

from the former. If they were the same, nothing new would arise, and it would be as if

one should in jest attempt to make six eggs out of three by first counting 3 eggs, then

taking away one and counting the remaining 2, and then taking away one more and counting
the remaining 1. But in the calculus of numbers and magnitudes, A or B or any other

symbol does not signify a certain object but anything you please with that number of

congruent parts, for any two feet whatever are denoted by 2; if foot is the unit or measure,
then 2 + 2 makes the new thing 4, and 3 times 3 the new thing 9, for it is presupposed that

the things added are always different (although of the same magnitude) ;
but the opposite

is the case with certain things, as with lines. Suppose we describe by a moving [point]

the straight line, RY YX = RYX or P B = L, going from R to X. If we suppose
this same [point] then to return from X to Y and stop there, although it does indeed describe

YX or B a second time, it produces nothing different than if it had described YX once.

Thus L B is the same as L that is, P B B or RY YX XY is the same as

RY YX. This caution is of much importance in making judgments, by means of

the magnitude and motion of those things which generate
26 or describe, concerning the

24 The text here has". . . fulminabile persistens in capella": the correction is obvious.
25 ". . . variaeque sint combinandi leges excogitabiles, . . ." "Excogitabiles",

"discoverable by imagination or invention", is here significant of Leibniz's theory of the
relation between the "universal calculus" and the progress of science.

28
Reading "generant" for "generantur" a correction which is not absolutely neces-



Two Fragments from Leibniz 387

magnitude of those things which are generated or described. For care must be taken either

that one [step in the process] shall not choose the track of another as its own that is, one

part of the describing operation follow in the path of another or else [if this should happen]
this [reduplication] must be subtracted so that the same thing shall not be taken too many
times. It is clear also from this that "components", according to the concept which we
here use, can compose by their magnitudes a magnitude greater than the magnitude of the

thing which they compose.
27 Whence the composition of things differs widely from the

composition of magnitudes. For example, if there are two parts, A or RS and B or RX,
of the whole line L or RX, and each of these is greater than half of RX itself if, for example,
RX is 5 feet and RS 4 feet and YX 3 feet obviously the magnitudes of the parts compose
a magnitude of 7 feet, which is greater than that of the whole; and yet the lines RS and

YX themselves compose nothing different from RX, that is, RS YX = RX. Accord-

ingly I here denote this real addition by ,
as the addition of magnitudes is denoted by +.

And finally, although it is of much importance, when it is a question of the actual generation

of things, what their order is (for the foundations are laid before the house is built), still

in the mental construction of things the result is the same whichever ingredient we consider

first (although one order may be more convenient than another), hence the order does not

here alter the thing developed. This matter is to be considered in its own time and proper

place. For the present, however, RY YS SX is the same as YS RY SX.
Scholium to prop. 24. If RS and YX are different, indeed disparate, so that neither

is in the other, then let RS YX = RX, and RS RX will be the same as YX RX
For the straight line RX is always composed by a process of conception (in notionibus).

If A is "parallelogram" and B "equiangular"
which are disparate terms let C be A B,

that is, "rectangle". Then "rectangular

parallelogram" is the same as "equiangular

rectangle ", for either of these is nothing differ-

ent from "rectangle". In general, if Maevius ^

is A and Titius B, the pair composed of the j^f y= K. "jP^

two men C, then Maevius together with this \\x / N<k

JV.^'//

pair is the same as Titius together with this \\xx ,'' '/

pair, for in either case we have nothing more Vx
^~"~~

"'^
,''/

than the pair itself. Another solution of
x
^
x
Xv^ Q ^,'' /

this problem, one more elegant but less general,
x

^_^ ^^''
can be given if A and B have something in A 9 C
common, and this common term is given and

that which is peculiar to each of the terms A and B is also given. For let that which is

exclusively A be M, and that which is exclusively B be N, and let M N = D and let

what is common to A and B be P. Then I affirm that A D = B D, for since A = P
M and B = P N, we haveAD = PM@N and also B@D = PMN.

sary, since a motion which generates a line is also itself generated; but, as the context shows,

"generare" and "describere" are here synonymous.
27 Italics ours.
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